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A B S T R A C T   

Venomous snakebite is a neglected tropical disease that annually leads to hundreds of thousands of deaths or 
long-term physical and mental ailments across the developing world. Insufficient data on spatial variation in 
snakebite risk, incidence, human vulnerability, and accessibility of medical treatment contribute substantially to 
ineffective on-ground management. There is an urgent need to collect data, fill knowledge gaps and address on- 
ground management problems. The use of novel, and transdisciplinary approaches that take advantage of recent 
advances in spatio-temporal models, ‘big data’, high performance computing, and fine-scale spatial information 
can add value to snakebite management by strategically improving our understanding and mitigation capacity of 
snakebite. We review the background and recent advances on the topic of snakebite related geospatial analyses 
and suggest avenues for priority research that will have practical on-ground applications for snakebite man-
agement and mitigation. These include streamlined, targeted data collection on snake distributions, snakebites, 
envenomings, venom composition, health infrastructure, and antivenom accessibility along with fine-scale 
models of spatio-temporal variation in snakebite risk and incidence, intraspecific venom variation, and envi-
ronmental change modifying human exposure. These measures could improve and ‘future-proof’ antivenom 
production methods, antivenom distribution and stockpiling systems, and human-wildlife conflict management 
practices, while simultaneously feeding into research on venom evolution, snake taxonomy, ecology, biogeog-
raphy, and conservation.   

1. Background 

Venomous snakebite is recognized as a ‘category A’ neglected trop-
ical disease (NTD) by the World Health Organization (Longbottom et al., 
2018; WHO, 2017; Williams et al., 2010; Williams et al., 2011) and 
disproportionately affects agricultural workers, especially young males 
in poor rural communities in the developing world (Hansdak et al., 1998 

[Nepal]; Harrison et al., 2009 & Mohapatra et al., 2011 [India]; Yates 
et al., 2010 [Tanzania]; Dehghani et al., 2014 [Iran]; Mendonça-da-Silva 
et al., 2017 [Brazil]; Ediriweera et al., 2019 [Sri Lanka]). The most 
heavily affected regions are tropical sub-Saharan Africa, the Indian 
subcontinent, South-East Asia, and tropical Latin America (Ediriweera 
et al., 2019; Kasturiratne et al., 2008). Estimates of the number of people 
affected globally vary greatly: between 1.2 and 5.5 million people are 
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bitten every year, 420,000–2.7 million are envenomed, up to 137,880 
die, and a further ~400,000 suffer from resulting long-term medical 
conditions (Chippaux, 1998; Gutiérrez et al., 2017; Kasturiratne et al., 
2008; Mion and Olive, 1997). Despite high snakebite prevalence, sub-
stantial knowledge gaps on many components of the issue remain, 
existing knowledge is often outdated, and, as shown by large ranges in 
bite [1.2–5.5 million] and envenoming [420,000–2.7 million] estimates 
provided above, contemporary burden estimates lack precision. 
Knowledge gaps directly stem from:  

(i) historical lack of investment into research on medical conditions 
that primarily affect the developing world,  

(ii) difficulties involved in data collection across remote regions with 
limited physical accessibility, unstable political conditions, and 
lack of reliable reporting systems, and  

(iii) limited access to and affordability of medical treatment, resulting 
in poor medical records on the distribution and frequency of 
snakebite. 

The resulting knowledge gaps have clear spatial components, i.e. to 
effectively distribute antivenoms and manage snakebite more generally, 
we need to understand the geographic variation of causative processes 
and their consequences, and identify efficient interventions from a 
geographical perspective, in addition to addressing the cultural, and 
financial problems. The main knowledge gaps fit into several broad 
categories: 

1.1. Sparse & heterogeneous data 

Firstly, sparse and heterogeneous data on distributions and 
geographic variation in abundance of medically relevant snake species 
(Genevieve et al., 2018; Gutiérrez et al., 2013; Yañez-Arenas et al., 
2016), exposure of vulnerable human populations to venomous snakes, 
snakebite frequency (Gutiérrez et al., 2010; Longbottom et al., 2018), 
and community-based epidemiology (Ediriweera et al., 2016) lead to a 
lack of knowledge on high risk snakebite areas, and on adequate pri-
oritization for the improvement of access to antivenom and medical 
facilities or preventive intervention campaigns. This lack of data stands 
in stark contrast with the potential benefits of using ‘big data’ 
spatio-temporal modelling approaches to analyze relevant patterns. 
Whilst rich distribution datasets exist for some snakes, e.g. in the 
Americas and Europe (Nogueira et al., 2019; Sillero et al., 2014), such 
data is not complete across all relevant snake species and spatial do-
mains. Additionally, snakebite incidence data are collected by a variety 
of methods, ranging from community-based randomized surveys to 
clinical presentations, which makes direct comparisons across 
geographical areas challenging. Lastly, many aspects of snake biology 
that could help with predicting the epidemiology of snakebite (abun-
dance, population dynamics, etc.) are understudied (Murray et al., 
2020). 

1.2. Changing processes 

Secondly, our world is changing rapidly due to climate change (IPCC, 
2019; O’Connor et al., 2020; Ortiz et al., 2021; Peace, 2020) and human 
land use change (Hurtt et al., 2020; Li et al., 2017; Ortiz et al., 2021). 
Both processes affect the spatial use of land by humans and snakes, and 
consequently their interactions (Ediriweera et al., 2018; Goldstein et al., 
2021; Martin et al., 2021; this issue). Predicting how snakebite preva-
lence and distribution will change is challenging and requires urgent 
attention to ensure successful snakebite management. 

1.3. Antivenom research 

Thirdly, the efficacy of available antivenoms and geographic varia-
tion thereof is poorly characterized. Because of limited quality control 

and case studies, it is often unclear which species or populations were 
used to create each antivenom, how much of the antivenom is required 
to effectively treat envenomation by each species, and sometimes even if 
the antivenom effectively neutralizes venom of a certain species at all 
(Chippaux et al., 1991; Fry et al., 2003; Gutiérrez et al., 2010, 2011; 
Saravia et al., 2002; Warrell, 1997; Williams et al., 2011). These issues 
are exacerbated by substantial intraspecific venom variation (Casewell 
et al., 2014, 2020; Currier et al., 2010; Daltry et al., 1996; Pla et al., 
2019; Senji Laxme et al., 2021a, 2021b), and limited knowledge on the 
geographic distribution of different intraspecific ‘venom lineages’. 

1.4. On ground measures 

Lastly, there is limited financial investment in antivenom improve-
ments, availability of protective equipment, and access to high quality 
medical treatment. Victims are often hours away from medical facilities 
and cannot afford treatment, and often seek local healers instead of 
western medicine (Ediriweera et al., 2017; Newman et al., 1997). 
Additionally, farmers often tend to fields barefoot (particularly rice), 
and dwellings generally offer limited protection from wildlife (Harrison 
et al., 2009). These factors highlight the urgent need for stockpiles of 
free, high-quality antivenoms in strategic locations along with provision 
of protective equipment (WHO, 2019). Encouraging such measures re-
quires accompanying community engagement and education campaigns 
(WHO, 2019), to build community knowledge and appreciation for the 
importance of snakebite prevention, adequate first aid, and attendance 
of approved medical facilities. 

In response to the impact of snakebite on health and economies in the 
developing world (Habib and Brown, 2018; Harrison and Gutiérrez, 
2016; Kasturiratne et al., 2008, 2017), WHO has compiled new guide-
lines for antivenom production and testing (WHO, 2010a, 2018) and 
plans to stockpile antivenoms at key facilities to alleviate and manage 
the issue (WHO, 2019). Such efforts would benefit from filling the above 
knowledge gaps. 

Over the last decade, spatial analytical methods and availability of 
high resolution, high quality spatial datasets have increased immensely, 
along with advancements in ‘big data’ processing capacities, high res-
olution satellite imagery, and access to high performance computing 
facilities. Many tasks that would have been computationally prohibitive 
10 years ago have become feasible in recent years. While many tradi-
tional spatial analytics prove useful for the analysis of spatial patterns in 
snakebite epidemiology, more advanced approaches to solving the 
World’s problems require revaluation at a frequent rate; snakebite 
management is a good example of this. Numerous new approaches to 
some of the spatial challenges outlined above, or similar ones in 
different fields, have been developed and successfully applied to varying 
regions of the world. This review aims to provide a transdisciplinary 
summary of recent advances in managing the global snakebite crisis 
from a spatial perspective using novel spatio-temporal modelling and 
‘big data’ approaches. 

Because the relevant literature and knowledge gaps span a broad 
range of topics and sub-topics, we review them in individual sections. 
First we discuss the sparsity of data on snake distributions [section 2], 
and how the typically conservation related field of human-wildlife 
conflict can lead to a unique, transdisciplinary scenario akin to, but 
distinct from traditional epidemiology [section 3]. We then elaborate on 
how an improved understanding of snake biology [section 4] and spatio- 
temporal patterns in snakebite incidence [section 5] is needed to address 
the global snakebite crises. This is followed by a review of how human 
populations become particularly vulnerable to the medical conse-
quences of snakebite and how such vulnerability can be mitigated by 
spatial optimization of medical resource allocation [section 6]. The 
penultimate section [section 7] synthesizes the dynamic nature of 
snakebite epidemiology by describing how climate change and land use 
change need to be incorporated into analyses to keep mitigation efforts 
up-to-date. Lastly [section 8], we discuss the geographic aspects of 
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antivenom distribution and development, which is quite distinct from 
the previous sections and ties snake biology and on-ground snakebite 
management into medical pharmacology. Throughout, we provide table 
overviews of key literature, give details of where ‘big data’ approaches 

are currently hindered by insufficient existing data, and suggest how 
remaining knowledge gaps could be closed to resolve practical chal-
lenges in snakebite management. 

Fig. 1. WHO (pink shaded area) and GARD (red dotted outlines) distribution estimates, and known occurrences (red dots) for medically relevant snake species of 
conservation concern (IUCN 2020) from category 1 Echis jogeri [A; data deficient] and Bungarus slowinskii [C & E; vulnerable] and category 2 Pseudechis papuanus [B; 
data deficient] and Mixcoatlus barbouri [D & F; endangered], showcasing how snakes often have limited distribution data and varying distribution estimates. ENMs 
for B. slowinski (E) and M. barbouri F) improve distribution estimates (blue = more suitable; data for models was combined with closely related, ecologically similar 
sister species B. bungaroides and M. browni, respectively, to achieve minimum data requirements for models). Note that suitable habitat may be unreachable by a 
species or may be occupied by closely related or competing taxa. Background in A-D shows mean vegetation greenness (fraction photosynthetic active radiation; 
https://land.copernicus.eu/global/products/fapar) with greener shown as darker shades of grey. 
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Table 1 
Summary of example studies using ENMs to estimate snake species distributions for a variety of purposes, including epidemiology of snakebite, snakebite risk, and 
snakebite incidence.   

ENM Method◦ Time Resolution Species Geographic Area Purpose 

Brito et al. (2008) Maxent current ~1 km Vipera latastei Southern Europe 
Northern Africa 

Phylogeography     

Vipera monticola   
Di Cola and Chiaraviglio 

(2011) 
GARP current ~10 km Bothrops alternatus Argentina Biogeography     

Bothrops ammodytoides       
Bothrops diporus   

Lawing and Polly, 2011 Bioclim 2100 2.5 arc- 
minutes 

11 rattlesnakes in the genus Crotalus North America Biogeography  

GLM − 6000    Conservation   
− 21000     

Yañez-Arenas et al. 
(2016) 

Maxent current ~20 km 192 species of venomous snakes North America Snakebite 
Incidence*   

2050   Central America       
South America  

Barlow et al. (2013) Maxent − 21,000 2.5 arc-min Bitis arietans Africa Phylogeography 
Lyet et al., 2013 GAM current 50 m Vipera ursinii France Ecology       

Conservation 
Yañez-Arenas et al., 2014 GARP current ~1 km 21 species of venomous snakes Veracruz, Mexico Snakebite 

Incidence* 
Nori et al. (2014) Ensemble: current ~5 km Bothrops alternatus Argentina Snakebite Risk*  

Maxent 2030  Bothrops ammodytoides    
GARP 2080  Bothrops diporus    
SVM   Crotalus durissus terrificus       

Micrurus pyrrhocryptus   
Burbrink and Guiher 

(2014) 
Maxent current ~1 km Agkistrodon piscivorus North America Phylogeography     

Agkistrodon contortrix       
Agkistrodon conanti       
Agkistrodon laticinctus   

Yousefi et al. (2015) Maxent − 21,000 ~1 km Montivipera raddei species complex Iran Ecology,   
current   Turkey Conservation   
2070   Armenia  

Gül (2015) Maxent current ~1 km Vipera barani Turkey Conservation 
Mizsei et al. (2016) Maxent current ~1 km Vipera ursinii Albania Conservation 
Schield et al., 2018 Maxent − 21000 2.5-min Crotalus scutulatus  Biogeography 
Terribile et al. (2018) Bioclim current 0.5◦

resolution 
Micrurus lemniscatus species complex South America Conservation  

ENFA 2080–2100      
Euclidian Distance       
FDA       
GAM       
GLM       
Gower Distance       
Mahalanobis Distance       
MARS       
Maxent       
ANN       
RF      

Yañez-Arenas et al. 
(2018) 

Maxent current ~1 km 39 species of venomous snakes Ecuador Snakebite Risk* 

Strickland et al. (2018) Maxent current ~1 km Crotalus scutulatus  Venom study 
Longbottom et al. (2018) BIOCLIM current ~5 km 278 species of venomous snakes Global Snakebite Risk* 
Asadi et al. (2019) Ensemble: current ~1 km Gloydius caucasicus Iran Phylogeography  

Maxent     Conservation  
GLM       
GBM       
RF      

Zacarias et al. (2019) Maxent current ~5 km Atractaspis bibronii Mozambique Snakebite Risk*   
2080  Bitis arietans  Conservation     

Bitis gabonica       
Causus rhombeatus       
Dendroaspis angusticeps       
Dendroaspis polylepis       
Dispholidus typus       
Naja annulifera       
Naja melanoleuca       
Maja mossambica       
Naja nigricollis       
Thelotornis capensis       
Thelotornis usambarics   

Bravo-Vega et al. (2019) Maxent current ~1 km Bothrops asper Costa Rica Snakebite 
Incidence* 

(continued on next page) 
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2. Back to basics: improving our knowledge of snake 
distributions 

Despite the enormous burden snakebite causes every year, our un-
derstanding of some basic features of the issue remains limited. WHO 
maintains a list of medically relevant snakes (WHO, 2018); updated 
annually, David Williams pers. com.), their known distributions (WHO, 
2010b); previously updated infrequently but soon biannually), and their 
categorization into class 1 (highest medical importance) or 2 (secondary 
medical importance; see https://apps.who.int/bloodproducts/snakea 
ntivenoms/database/), depending on the impact they cause in any 
given country (WHO 2018). Taxonomic revisions of snake taxa warrant 
a rigorous and continuous review process, which is currently under 
development in form of an interactive online WHO database (David 
Williams, pers. Com). Establishing accurate distribution maps of snakes 
is often hampered by surprising data sparsity. Even category 1 species 
that contribute immensely to the global burden of snakebite sometimes 
have few verified geographic occurrence localities, and data availability 
for range restricted, threatened or rarer taxa is much worse (Fig. 1). This 
showcases the dual need of distribution information for epidemiology as 
well as for conservation management. It is noteworthy that WHO listed 
species only include those that contribute substantially to the annual 
snakebite burden - snakes which cause occasional bites or less severe 
symptoms are often even more data deficient. Snake distribution esti-
mates are usually based on limited scientific literature and expert 
opinion. Range estimates are provided by different databases (such as 
the latest WHO distribution estimate (Longbottom et al., 2018; WHO, 
2010b), ‘the Global Assessment of Reptile Distributions’ (Meiri et al., 
2017; Roll et al., 2017) and ‘RepFocus’ (Midtgaard, 2021), which often 
disagree (Fig. 1). Such discrepancies stem from differences in occurrence 
records used and from different interpretations of what best defines the 
habitat of a species (boundaries may be drawn subjectively based on 
similarities in vegetation or altitude), factors which need to be resolved 
urgently. 

Point (fine-scale) occurrence data lies at the core of most distribution 
estimates. These data come from a combination of different sources 

including primary literature records, museum records, and other ob-
servations, and are often collated in public and private databases. Some 
frequently used public databases are global platforms such as the Global 
Biodiversity Information Facility (GBIF, 2021), USGSs Biodiversity In-
formation Serving Our Nation (BISON, 2021), Biocollections (iDigBio, 
2021), VertNet (2021), Arctos (2021), as well as country specific plat-
forms (e.g., the Atlas of Living Australia (ALA, 2021), and a growing 
number of citizen science platforms such as iNaturalist (iNaturalist, 
2021) or HerpMapper (2021). The ever-growing number of publicly 
accessible databases presents new opportunities for biodiversity 
research, although biodiversity data is unfortunately typically spatially 
and temporally biased (Boakes et al., 2010) towards developed regions, 
i.e., the USA, Europe, and Australia (Peterson, 2014), and towards 
accessible areas within regions (Ficetola et al., 2013; Piccolo et al., 
2020). 

Data from taxonomically reliable sources such as museum records 
and scientific literature has its obvious advantages: often they relate to 
voucher specimen or DNA samples, which enable re-examination to 
verify identification or re-attribution after taxonomic revisions. How-
ever, enormous advances in data processing capacities over the last 
decade, combined with the ever-growing number of mobile phone de-
vices with cameras used by the general public even in the developing 
world, present a promising opportunity to fill data gaps without the need 
for time consuming and costly fieldwork by experts. For example, iNa-
turalist has a mobile phone application that allows users to identify 
organisms on photos using automatic image recognition (Seek, 2021). 
Furthermore, taxonomic identification of organisms can be validated by 
experts within iNaturalist to achieve ‘research grade’ status (see 
https://www.inaturalist.org/pages/help#quality). The platform has 
even been used to create a specific project for ‘medically important 
venomous snakes’ (Genevieve et al., 2018), which now contains over 12, 
000 georeferenced observations from 285 species by 3440 observers 
(https://www.inaturalist.org/observations?project_id=10715). 

Citizen science platforms could prove valuable in filling sampling 
gaps (Chandler et al., 2017), especially if contributions from poorly 
sampled regions can be elicited (Genevieve et al., 2018). Further data 

Table 1 (continued )  

ENM Method◦ Time Resolution Species Geographic Area Purpose 

Lourenço-de-Moraes 
et al., 2019 

Bioclim, Maxent, ENFA 2080 0.05◦ 144 species of snakes including 24 
venomous snakes 

Brazil, Conservation 

Mizsei et al. (2020) Ensemble current  Vipera graeca Greece and Albania Ecology  
GLM 2020    Conservation  
GAM 2040      
ANN 2060      
RF 2080      
Maxent      

Lara-Galván et al. (2020) BIOCLIMBIOCLIM. 
DISMO 

current ~1 km Crotalus aquilus Mexico Ecology  

BRT   Crotalus atrox  Conservation  
CART   Crotalus basiliscus    
FDA   Crotalus Lepidus    
GAM GLM GLMNET 
MARS   

Crotalus molossus    

MAXENTMAXLIKE 
MDF   

Crotalus polystictus    

RF   Crotalus pricei    
RPART SVM   Crotalus scutulatus       

Crotalus willardi.   
Yousefi et al. (2020) Ensemble: current ~1 km Macrovipera lebetina Iran Snakebite Risk*  

Maxent   Echis carinatus    
GBM   Pseudocerastes persicus    
GAM   Naja oxiana    
GLM       
RF      

◦Maxent: maximum entropy models; GLM: generalized linear models; GBM: generalized boosting models; GAM: generalized additive models; RF: random forest 
models; GARP: Genetic Algorithm for Rule-set Production; SVM: Support Vector Machine. 
*Exposure here refers to how likely human populations are to be exposed to a venomous animal based on its distribution and habitat suitability, while risk involves the 
exposure and its potential consequence, and incidence is the correlation of predictors with explicitly measured numbers of snakebite. 
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can be extracted directly from social media platforms along with co-
ordinates automatically recorded by smartphones (Barve, 2014). How-
ever, a suitable system to vet citizen science data rigorously needs to be 
established before integration into research grade datasets. Some vetting 
tools may include superior image recognition systems, crowdsourcing of 
snake identification (Durso et al., 2021), and data pipelines for targeted 
expert vetting of priority data or areas. These systems could be inte-
grated into the new WHO database mentioned above, which is already 
planned to include an interactive map viewer of expert vetted snake 
distributions, species photos and information on antivenoms and anti-
venom producers, and will provide a ‘one-stop-shop’ for data access and 
collaboration between researchers, stakeholders, and the general public. 
It will function as a nexus to continuously update taxonomy and dis-
tributions based on literature and occurrence data from a broad range of 
databases under consultation with an expert panel and contributions 
from the general public (David Williams, pers. Com.). 

As mentioned, simple presence points or area maps of snake distri-
butions are informed by occurrence records, maps in scientific publi-
cations, expert knowledge, and subjective interpretations of 
connectivity between clusters of distribution records. In the age of ‘big 
data’ (Leonelli, 2014; sourcing, processing and analysis of large datasets 
using information technology) and high performance computing sys-
tems, such bias can be greatly reduced using statistical methods that 
describe species’ habitat suitability, referred to as ecological niche 
models (ENMs; Sillero, 2011), should sufficient input data exist. A large 
suite of ENM methods has evolved over the last two decades, many of 
which are already extensively used in conservation (Guisan and Thuil-
ler, 2005; Guisan et al., 2013; Mizsei et al., 2020) and epidemiology of 
zoonotic diseases (Escobar and Craft, 2016; Escobar et al., 2013; Murray 
et al., 2018; Peterson, 2014; Soucy et al., 2018). ENMs use known 
occurrence localities and environmental conditions to estimate envi-
ronmental suitability across the study area and predict potentially 
occupied habitat (Fig. 1). The availability of increasingly fine-scale, 
gridded geographic data on land use, climate, vegetation, topography, 
and other landscape features enable prediction of suitable habitats for a 
species, how suitability varies between grid cells, and when linked to 
back-casts or future projections of these factors also how it may have 
changed in the past or will change in the future. Reliable ENMs can often 
be created with reasonably small data sets (20–50 occurrence records; 
Stockwell and Peterson, 2002) and for large batches of species using 
high-performance computing infrastructure (Pintor et al., 2018, 2019). 
ENMs can help delineate boundaries of suitable habitat around known 
occurrences objectively, detect habitat patches that are suitable but 
unsampled (Terribile et al., 2018; Yousefi et al., 2015), determine the 
degree of habitat connectivity, describe the likelihood of snake en-
counters as opposed to simple presence or absence (Yañez-Arenas et al., 
2018), and generally increase the resolution of distribution maps. In 
essence they enable description of the area of occupancy (actually 
occupied habitat patches) within a snakes’ extent of occurrence 
(approximate outline encompassing all occurrences; IUCN, 2020). 

ENMs have already been used to predict distributions of venomous 
species for studies on biogeography, phylogeography, or conservation 
(Asadi et al., 2019; Barlow et al., 2013; Brito et al., 2008; Burbrink and 
Guiher, 2015; Di Cola and Chiaraviglio, 2011; Gül; Terribile et al., 2018; 
Yousefi et al., 2015), and to estimate human risk of exposure to snake-
bite (Bravo-Vega et al., 2019; Nori et al., 2014; Saupe et al., 2011; 
Yañez-Arenas et al., 2018; Yañez-Arenas et al., 2014; Yañez-Arenas 
et al., 2016; Yousefi et al., 2020; Zacarias and Loyola, 2019, Table 1). 
The most commonly used ENM method amongst the set of studies in 
Table 1, and probably amongst ENM literature in general, is Maxent. 
Maxent (i.e., the maximum entropy algorithm; Phillips et al., 2006; 
Phillips and Dudík, 2008) is a machine learning algorithm that performs 
well compared to many other methods (Elith et al., 2006), especially 
when working with presence only datasets, i.e. without ‘true absences’ 
where the species is known not to occur. Presence only datasets are 
common, especially for data deficient species, because substantial 

sampling effort is needed to confirm a species’ absence from a location 
with certainty while confirming its presence only requires one obser-
vation (Phillips et al., 2009). Other commonly used methods are boosted 
regression trees (BRTs; Elith et al., 2006; Elith and Leathwick, 2017; 
Elith et al., 2008), generalized linear models (GLM; Guisan et al., 2002; 
McCullagh, 2019), generalized additive models (GAM; Grego, 2006; 
Guisan et al., 2002; Hastie and Tibshirani, 1987; Hastie and Tibshirani, 
1990; Liu, 2008), generalized boosting models (GBM; Ridgeway, 2007), 
Artificial Neural Networks (ANN; Colasanti, 1991; Lek and Guégan, 
1999), random forest models (RF; Breiman, 2001; Evans et al., 2011), 
Integrated Nested Laplace Approximation (INLA) Bayesian methods for 
fitting models with spatial random effects (R-INLA; Lindgren and Rue, 
2015; Redding et al., 2017), and the genetic algorithm for rule-set 
production (GARP; Stockwell, 1999). Often several methods are com-
bined into ensemble models to allow uncertainty to be quantified by 
comparing where models disagree and to compare model performance 
more generally since novel advances of existing model methods occur 
frequently (Araújo and New, 2007; Diniz-Filho et al., 2009). 

Knowledge of snake distributions is fundamental to understanding 
where vulnerable human populations are exposed to snakebite, the de-
gree of exposure, and where antivenom for each species is needed. As 
such, they form the basis for all other aspects of snakebite management 
and for conservation. Consequently, we recommend a thorough, itera-
tive, globally consistent approach to fill knowledge gaps, where each 
component is updated regularly and feeds into improvements of the next 
(Fig. 2). The components are (i) an up-to-date list of medically relevant 
snakes, (ii) a database of expert vetted occurrence localities for each 
species, (iii) mapped range estimates based on occurrences, literature, 
and expert advice, and (iv) ENMs based on known occurrences and high 
quality, biologically relevant geographic layers of environmental con-
ditions. ENMs ultimately feed into (v) targeted research. The snake 
master list is updated regularly based on novel taxonomic and epide-
miological data. New occurrence data is added from publications, public 
databases and vetted citizen science data. Range maps are updated 
under expert advice. ENMs are rerun using new data and environmental 
layers. Lastly, ENMs can provide information on where additional 
sampling efforts are needed, or where taxonomy needs revision (e.g. 
disjunct populations). Efforts to address these knowledge gaps, such as 
targeted research, then feed back into the master list, the occurrence 

Fig. 2. Proposed components of iterative strategy to improve knowledge on 
snake species and their distributions. 
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database and so on. Targeted surveys or elicitation of citizen science 
efforts in specific, under-sampled areas is required to strategically fill 
sampling gaps. Note that expert derived range estimates always remain 
an important part of the process because ENMs only describe habitat 
suitability but cannot account for other reasons that affect species niche 
occupation, such as presence of competitor species or inability to reach 
disjunct patches of suitable habitat. Furthermore, ENMs performance 
requires validation using expert derived range estimates to account for 
information that is not available as spatial predictor layers. 

3. Human-wildlife conflict meets epidemiology 

Historically, human-wildlife conflict has been an important issue 
(Anand and Radhakrishna, 2017; Lamarque et al., 2009; Nyhus, 2016; 
Treves et al., 2006). The modification of natural habitat for human uses 
such as farming has led to a myriad of conflicts between humans and 
wildlife, such as predation of stock by wild predators (Beattie et al., 
2020; Hill, 2015; Manral et al., 2016; Messmer, 2000; Western et al.), 
destruction of crops by herbivores (Kiffner et al., 2021; Mamo et al., 
2021; Priston and Underdown, 2009; Siljander et al., 2020), attacks on 
humans (Jhala et al., 2021; Tarrant et al., 2020; Western et al.), and 
introduction of zoonotic diseases (Jacob et al., 2020; Jhala et al., 2021; 
Jones et al., 2013; Tarrant et al., 2020). 

Spatial analyses have long been used to study human-wildlife con-
flict (Carter et al., 2020; Goswami et al., 2015; Kretser et al., 2008; 
Laliberte and Ripple, 2003; Siljander et al., 2020). For example, 
Siljander et al., (2020) combined a georeferenced dataset of interviews 
with statistical geographic analyses over land use maps to understand 
the geographic patterns of crop raiding by non-human primates in 
Kenya, enabling appropriate preventative measures by identifying the 
most vulnerable locations. Similarly, Goswani et al., (2015) used 
mechanistic modelling to understand the patterns of crop raiding by 
elephants in India to make management recommendations. 

Epidemiology has also frequently used spatial analyses to estimate 
the spread of diseases (Peterson, 2014; Santos-Vega et al., 2016). Spatial 
Epidemiology has blossomed with the advent of big data, geostatistical 
methods and increased computing power, resulting in a movement 
termed precision public health (the combination of high-resolution health 
data with environmental and socioeconomic predictors to produce 
fine-scale estimates of disease risk; Desmond-Hellmann, 2016). For 
diseases spread directly amongst primary hosts, without the need of a 
vector or reservoir, simple mathematical models describing host inter-
action frequencies and disease transmission rates are usually sufficient 
to estimate disease spread (Grassly and Fraser, 2008). However, it has 
recently been emphasized that disease transmission risk has an impor-
tant but often neglected ecological component dependent on the dis-
tribution, habitat requirement, and ‘population’ dynamics of both the 
pathogen and host species (Peterson, 2014). 

In the special case of zoonotic diseases, epidemiological studies have 
the added challenge of mapping several biotic components of the disease 
transmission: these include wildlife that functions as disease reservoirs 
and, in some cases, disease vectors that spread the infectious agent be-
tween reservoirs and primary hosts (for example mosquitos). As such, 
zoonotic and vector borne diseases present an intersection between 
human-wildlife conflict and traditional epidemiology (Reisen, 2010). In 
cases where data on disease itself is sparse, as is common for NTDs and 
emerging infectious diseases, vector and host distribution often serve as 
a useful metric of risk to guide preventative measures (Campbell et al., 
2015; Ferro et al., 2015; Mylne et al., 2015; Peterson, 2014) as the 
pathogens spread depends greatly on the population dynamics and 
abundance of vector and host (Lloyd-Smith et al., 2005). Similarly, the 
pathogen’s habitat requirements are determined by the internal condi-
tions of the vector and host, therefore, areas of disease risk can be seen as 
the intersection of vector, host, and pathogen distributions (Reisen, 
2010) or species richness resulting from distribution overlap (Ferro 
et al., 2015). There is a multitude of studies that illustrate how spatial 

analyses can disentangle relevant epidemiological patterns in zoonotic 
diseases and NTDs (Hamm et al., 2015; Luz et al., 2010; Marshall, 1991), 
often by interpolation of important spatial features of disease dynamics 
from limited source data to unsampled locations. 

While snakebite is similar to zoonotic diseases in some respects, such 
as the involvement of both a human victim and a wildlife agent inflicting 
the disease, it has unique attributes compared to such diseases. In many 
ways, snakebite has more in common with traditional human-wildlife 
conflicts that involve physical harm inflicted on humans, not least 
because it involves conservation concerns of the ‘agent’ (Pandey et al., 
2016). However, while not caused by a pathogen, snakebite envenoming 
is more analogous to a disease than a physical injury because it involves 
complicated and prolonged physiological and immunological effects and 
treatments (Gutiérrez et al., 2011; Ogawa et al., 1996; Russell, 1988) 
and, consequently, has rightfully been elevated to NTD status (WHO, 
2017). Snakebite risk can also be viewed as the result of overlaps in 
snake and human distributions, modified by patterns in their abun-
dance, activity, and population dynamics, similar to vector borne dis-
eases. Consequently, the same tools that have been used to disentangle 
spatial patterns in human-wildlife conflicts and vector borne diseases 
can be applied to snakebite research. This path has begun to receive 
attention, but progress is currently limited by sparse data on snake 
distributions, spatial ecology, general biology, and snakebite incidence 
(see following sections). 

4. Spatial patterns in diversity, abundance, activity, and 
population dynamics of snakes 

How humans interact with snakes depends on snake distributions, 
and how humans and snakes overlap in their use of space and time 
within those distributions (Goldstein et al., 2021). This, in turn, depends 
on snake abundance, activity patterns, and population dynamics. Un-
fortunately, all three of these attributes of snake biology are 
understudied. 

The abundance of any species varies across their distribution (Brown, 
1984), depending on how it uses the available space (i.e. behavioral 
requirements such as preferred foraging habitats; Blouin-Demers and 
Weatherhead, 2001) and how favorable different habitats are to popu-
lation growth (i.e. physiological requirements, such as temperature 
regime; Medina-Barrios et al., 2019). Studies quantifying the variation 
in abundance of snakes across their distribution are sparse (Bravo-Vega 
et al., 2019), costly, and time consuming. ENMs aim to estimate species’ 
realized ecological niche (as opposed to the ‘occupied niche’ which 
represents the subset of conditions that are historically and geographi-
cally accessible; Sillero, 2011) and, therefore, provide estimates of 
habitat suitability. Theoretically, higher habitat suitability should 
coincide with higher abundance, as long as all relevant environmental 
features that influence a species’ behavioral and physiological re-
quirements are included as predictors (Ehrlén and Morris, 2015; 
Jiménez-Valverde et al., 2021; VanDerWal et al., 2009; Weber et al., 
2017), although this trend is contentious (Dallas et al., 2017; Dallas and 
Hastings, 2018). Consequently, habitat suitability derived from ENMs is 
often used as a proxy for abundance, or at least of upper limits of po-
tential abundance, since unknown factors that are not included in 
models (e.g. presence of predators, competitors or unknown environ-
mental variables) may further limit abundance (Braz et al., 2020; 
Jiménez-Valverde et al., 2021; Muñoz et al., 2015; VanDerWal et al., 
2009; Weber et al., 2017). Additionally, the observed relationship be-
tween habitat suitability and abundance may not be linear but asymp-
totical (VanDerWal et al., 2009) as abundance approaches carrying 
capacity and may be weakened due to dispersal amongst neighboring 
cells with different suitability, especially when resolutions are high 
compared to dispersal ability (Macartney et al., 1988). Nevertheless, 
correlations of ENM derived habitat suitability with upper limits of 
abundance have been observed (Braz et al., 2020; Jiménez-Valverde 
et al., 2021; VanDerWal et al., 2009; Weber et al., 2017). In fact, snakes’ 
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habitat suitability or metrics based on it (such as distance from the 
‘niche centroid’; Yañez-Arenas et al., 2016) have been used as proxies of 
snake abundance and snakebite risk and have even been shown to 
correlate with snakebite incidence (Yañez-Arenas et al., 2016). As such, 
we encourage studies that further test the ability of ENMs to accurately 
predict abundance across different species and identify how ENMs 
predictive ability of abundance can be improved. 

Even in areas of high snake abundance, humans are only exposed to 
snakebite risk if snakes are actually active at the same time as people, 
and there is overlap within the same geographic space (Goldstein et al., 
2021). Reptile activity and microhabitat selection varies with season 
(Ediriweera et al., 2018; Lindström et al., 2015; Madsen and Shine, 
1996) time of day (Ealy et al., 2004), and ambient abiotic conditions 
(Pintor et al., 2016), as do human activity patterns (Goldstein et al., 
2021). These temporal patterns in activity are usually a direct result of 
(i) patterns in abiotic conditions (higher activity at warmer tempera-
tures or after rain; Angarita-Gerlein et al., 2017; Karabuva et al., 2016) 
and (ii) biological factors, such as breeding seasons or increases in prey 
abundance (Ediriweera et al., 2018). The latter, in turn, are triggered by 
changes in abiotic conditions (Licht, 1972). Because most changes in 
activity patterns are ultimately influenced by abiotic conditions, they 
can be modelled using average monthly conditions (climate oscillations; 
for determining typical seasonal patterns) and daily historic weather 
data (weather anomalies; for determining weather related deviations 
from seasonal averages; (Ediriweera et al., 2018). Fine-scale spatio--
temporal climate and weather data has become available for variables 
such as temperature and precipitation (Fick and Hijmans, 2017; Funk 
et al., 2015), but also for resulting changes in habitat attributes (e.g. 
10-daily 300 m resolution layers of global fraction photosynthetic active 
radiation; Fuster et al., 2020). Historical weather data has already been 
used to model spatio-temporal variation in habitat use by nomadic an-
imals (Reside et al., 2010) and to disentangle the effects of seasonal 

climate patterns versus weather anomalies on temporal variation in 
snakebite incidence in Sri Lanka (Ediriweera et al., 2018). Dynamic 
models of how snake activity and abundance vary across time and space 
could prove useful as forecasting tools to predict when people may 
experience elevated risk of encountering snakes and which species are 
encountered more at different times of year. Such forecasts could allow 
health centers to prepare for increased numbers of snakebite patients or 
to warn the public to take additional precautions to avoid snakebite. 
Together with information on circadian rhythms of snakes, very 
fine-scale (i.e. 10 m × 10 m) spatio-temporal models of snakebite risk 
could be created (Goldstein et al., 2021). 

Spatio-temporal patterns in snake presence, abundance and activity 
lead to complex patterns in snake diversity, which also affect snakebite 
risk. Although some snakes are more prone to bite than others because 
they enter human dwellings, are harder to see, or are more aggressive 
(Goldstein et al., 2021), the overall degree of human exposure results 
from the cumulative exposure to all species present in an area. Conse-
quently, patterns in snake diversity are a crucial aspect of variation in 
snakebite risk. It has been proposed that snakebite risk can be estimated 
using the cumulative snake species richness weighted by each species’ 
propensity to inflict bites (e.g. the known fraction of bites caused by 
each species in a country or district; Yañez-Arenas et al., 2016; Zacarias 
and Loyola, 2019) but further research needs to establish how different 
species’ presence, habitat suitability, and biting propensity interact to 
lead to differences in overall snakebite risk. 

It is also noteworthy that cumulative weighted snake species richness 
is a measure of snakebite risk, i.e. the product of the likelihood of 
exposure to a snake (snake presence and abundance = exposure to the 
hazard) and the likelihood of an encounter leading to a bite (e.g. snake’s 
propensity to bite = potential consequence of exposure to the hazard; 
Fig. 3). The terms ‘snakebite risk’ and ‘snakebite incidence’ are often 
used interchangeably and often also applied to mere snake exposure 

Fig. 3. Diagram describing the dependence of snakebite mortality and morbidity on snakebite and envenomation incidence, and risk (the product of likelihood of 
exposure and consequence of exposure). Snakebite risk is intrinsic to the nature of the dangerous herpetofauna in an area, incidence is how often the risk is realized, 
and snakebite morbidity/mortality further depend on snakebite management practice. 
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Table 2 
Summary of key studies on spatial variation in snakebite incidence or mortality, ranging from simple descriptive studies to fine-scale predictions.   

Type Measure Area Resolution Method Important Predictors 

Studies describing broad scale spatial patterns and hotspots in snakebite incidence 
Swaroop (1954) Spatial* Mortality Global Source data: NA NA  

Temporal*   Country       
Predictions:       
NA   

Chippaux (1998) Spatial incidence Global Source data: NA NA     
Country       
Predictions:       
Snakebite Regions   

Kasturiratne et al. 
(2008) 

Spatial Incidence Global Source data: NA NA   

Mortality  Countries       
Predictions: global burden 
region   

Studies using simple statistics, epidemiology, and coarse scale spatial predictors to describe spatial variation in snakebite incidence 
Molesworth (2003) Spatial Incidence West Africa 

(Ghana & 
Nigeria) 

Source data: LogR NDVI↑  

Temporal   29 health facilities 
Predictions: ~15 km grid  

Season (Rainy season) 

Leynaud and Reati 
(2009) 

Spatial Incidence Cordoba, 
Argentina 

Source data: Spatial smoothing model Location in departments with high 
percentage of persistence farming     

Department  Species identity     
Predictions:       
department   

Mohapatra et al. 
(2011) 

Spatial Mortality India Source data: LogR Male/Female  

Temporal   ~7000 small areas  Religion (Hindu↑)  
Individual   Predictions: states  Occupation (Agricultural worker↑)       

Season (Monsoon↑)       
State (high prevalence states↑)       
Age (15–29↑) 

Chippaux, 2017** Spatial Incidence Americas Source Data: t-test, Pearson Correlation, 
Chi Squared, Mann-Whitney 
Test 

Altitude↓  

Temporal mortality  Province  Male/Female  
Individual   Predictions:  Age (young to middle aged↑)     

Province  Climate Zone       
Season (Rainy or Summer↑)       
Population density↑↓       
Year↑↓ 

Angarita-Gerlein 
et al. (2017) 

Spatial incidence Colombia Source Data: Cross-correlation analysis Precipitation  

Temporal   Municipality  Municipality Identity     
Predictions:       
Municipality   

Riascos et al., 2019 Spatial Incidence Coffee Triangle 
Region, 
Colombia 

Source data: Municipality NA Year  

Temporal   Predictions:  Season     
NA          

León-Núñez et al. 
(2020) 

Spatial Incidence Colombia Source data: t-test, Pearson Correlation, 
Chi Squared, Mann-Whitney 
Test 

Male/Female  

Individual   Department  Urban/Rural     
Predictions: Department  Ethnicity (Afro-Colombian & 

Indigenous↑)       
Age (28–35↑)       
Region (Amazonia & Orinoquia↑)       
Species identity       
Year↑ 

Studies using relatively novel fine scale source data, advanced statistical models, and improved resolution 
Hansson et al. 

(2010) 
Spatial Incidence Nicaragua Source data: municipality Poisson regression Season (Rainy Season↑)  

Temporal   Predictions:  Environmental Region (altitude, 
precipitation, geographic clustering; 
Wet Lowlands↑)  

Individual   municipality  Rural population percentage↑       
Male population percentage↑       
Young population percentage       
Underreporting index↑ 

Hansson et al. 
(2013) 

Spatial Incidence Costa Rica Source data: district Bayesian Poisson regression altitude↓ 

(continued on next page) 
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Table 2 (continued )  

Type Measure Area Resolution Method Important Predictors     

Predictions:  precipitation↑     
district  length of dry season↓       

rural population percentage↑       
population percentage near large 
forests↑       
Snake habitat suitability↑ 

Chaves et al. (2015) Spatial incidence Costa Rica Source data: County geographically weighted 
regression 

Weather & Climate Oscillations  

Temporal   Predictions:  Temperature↑     
County  Precipitation       

Poverty Indicators (Poverty gap       
index and percentage of destitute 
housing)↑       
Altitude↓ 

Yañez-Arenas et al. 
(2016) 

Spatial Incidence Americas Source data: GLM Cumulative MRS presence & 
abundance index (SRI_2) ↑     

Provinces Predictions: ~20 
km grid   

Yañez-Arenas et al., 
2014 

spatial Incidence Veracruz, 
Mexico 

Source data: Municipality GAM 2 MRS species’ abundance estimate↑     

Predictions: Municipality  Index of marginalization↑ 
Suraweera et al. 

(2020) 
Spatial Mortality India Source data: Spatial Poisson model Age group (30–69↑)  

Temporal Incidence 
(inferred)  

~7000 small areas 
Predictions: ~50 km grid  

Male/Female  

Individual     Season (Monsoon↑)       
Elevation to 400m↓       
Urban/Rural       
Poverty (rural female illiteracy)↑       
Monthly mean temperature to 
20 ◦C↑       
Year↓       
Species identity 

Schneider et al. 
(2021) 

Spatial Incidence Brazil Source data: Negative binomial 
regression model 

Major habitat type (Tropical↑)     

Municipality  Temperature↑     
Predictions:  Precipitation↑     
Municipality  Elevation↑       

Urbanization percentage↓       
Venomous snake richness       
Forest loss↑       
GDP per capita↓ 

Studies resulting in fine scale predictions of snakebite incidence 
Ediriweera et al., 

(2016) 
Spatial  Sri Lanka Source Data: household 

clusters in smallest 
administrative divisions 

GLM 
GAM 
Geostatistical binomial 
logistic 
Log-linear models 

Male/Female 
Age (middle aged↑) 
Time of day (evening↑) 
Occupation (farm labourer↑) 
Education↓ 
Monthly income↓ 
Population density↓ 
Elevation 
Occupation distribution 
Climatic zone 
Season 
humidity weather abnormalities↓ 

Ediriweera et al. 
(2018) 

Temporal   Predictions: 

Ediriweera et al., 
2019 

Individual   1 km 

Bravo-Vega et al. 
(2019) 

Spatial incidence Costa Rica Source Data: 
District 
Predictions: 
1 km 

Linear regression Encounter frequency of Bothrops 
asper 
Human population density 

Goldstein et al. 
(2021) 

Spatial 
temporal 

Incidence Sri Lanka Source data: 
10m-2km 
Predictions:2 km study 
squares 

Bottom-up Agent based 
modelling 

Snake-famer activity overlap 
patterns based on: 
Monthly precipitation 
Number of rainy days 
Farmer type 
Land type 
Daily farmer activity time↑ 
Population percentage farmers↑ 
Snake activity season↑ 
Circadian snake activity time↑ 
Snake aggressiveness↑ 
Snake land type association↑ 
Snake abundance estimate↑ 

GAM = generalized additive models; GLM = generalized linear models; LogR = Logistic regression; SRI = ‘snakebite risk index’; NDVI = normalized difference 
vegetation index. 
↑ = positive correlation; ↓ = negative correlation; no arrow = complex correlation pattern; bold text = significant categorical predictor. 

A.F.V. Pintor et al.                                                                                                                                                                                                                             



Toxicon: X 11 (2021) 100076

11

(WHO, 2010b; Yañez-Arenas et al., 2018). We suggest that snakebite risk 
is henceforth used to describe the theoretical probability of encoun-
tering, and being bitten by a snake, while incidence is the realized, 
observed or modelled snakebite frequency and depends on additional 
factors such as human activities, demography, population density, and 
protective equipment, amongst others, i.e. how often snakebite risk is 
realized (Fig. 3). In lay terms, snakebite risk is the likelihood that one 
could encounter a snake and be bitten by it in a given area at a given 
time. Snakebite incidence is the frequency at which these encounters 
lead to actual bites based on how many people are in the area, their 
activity patterns, their awareness of the risk, and how they manage the 
encounter. Snakebite risk is unlikely to change if snakes are conserved 
successfully because it relates to features intrinsic to snakes present in 
the area, while snakebite incidence can be reduced with adequate ed-
ucation and management (Ediriweera et al., 2018). Following this, 
snakebite envenoming, snakebite related morbidity and mortality are 
influenced by snakebite incidence. The former depends on protective 
equipment, the snake’s agitation, and its behavioral propensity to inflict 
wet bites. The latter two depend on how well snakebite is managed from 
a medical perspective. 

Note that modification of human activities can alleviate snakebite 
risk. Some may, therefore, choose to include them in the risk definition. 
However, determining the effect human activities in an area on risk 
usually requires knowledge of actual snakebite numbers and is, conse-
quently, hard to separate from observed incidence. In the literature, 
human activities are almost always included in analyses of observed 
incidence, not theoretical risk (which can be mapped without knowl-
edge of actual snakebite numbers). In theory, however, the expected 
rather than observed effect of different activities on snakebite risk could 
be mapped and, in such cases, it may be considered as a modifying factor 
of risk, rather than of incidence (e.g. the theoretical risk of snakebite for 
a farmer using machinery versus manual labor). 

Several recent studies have estimated geographic variation in 
snakebite risk using modelled snake diversity (i.e. cumulative presence- 
absence maps) or some measure of cumulative habitat suitability (as a 
proxy for cumulative abundance; Yañez-Arenas et al., 2018 [Ecuador]; 
Yousefi et al., 2020 [Iran]; Zacarias and Loyola, 2019 [Mozambique]). 
Some have even confirmed a correlation between snakebite risk and 
snakebite incidence (Yañez-Arenas et al., 2016 [Americas]; 
Yañez-Arenas et al., 2014 [Mexico]). It would be useful to expand 
snakebite risk maps globally, to estimate spatial variation and seasonal 
and weather based fluctuations in snakebite risk, and to perform 
rigorous ground-truthing of these modelling approaches’ ability to es-
timate spatio-temporal variation in snake activity, abundance, and 
diversity. 

5. The missing link: how do humans & snakes interact to create 
spatio-temporal patterns in snakebite incidence 

Similar to how the frequency and type of human-snake interactions 
depend on snake abundance, activity, and population dynamics, they 
also depend on human population density, lifestyle, and demographics. 
Many studies worldwide have documented demographic patterns with 
respect to snakebite epidemiology (Ediriweera et al., 2016). Across most 
countries, young males in rural communities, agricultural workers, and 
members of lower socio-economic and less well-educated groups are 
disproportionately affected (Dehghani et al., 2014; Harrison and 
Gutiérrez, 2016; Harrison et al., 2009; Suraweera et al., 2020). Patterns 
of spatial variation in snakebite incidence usually follow these general 
epidemiological patterns: at a global scale, snakebite incidence varies 
greatly, with hotspots in regions with rural subsistence farming such as 
South Asia, tropical sub-Saharan Africa and Latin America (Kasturiratne 
et al., 2008). At intermediate scales, snakebite incidence or mortality 

has been documented nationally for countries in Africa, Europe, the 
Americas, and South Asia (Chippaux, 1998, 2011, 2012, 2017; Halilu 
et al., 2019; Suraweera et al., 2020). At a fine scale, for much of the 
Americas, and some of South Asia and Africa, some data exists at district 
or municipality level (Bravo-Vega et al., 2019; Chaves et al., 2015; 
Chippaux, 2017; Ediriweera et al., 2016; Hansson et al., 2010, 2013; 
León-Núñez et al., 2020; Mohapatra et al., 2011; Molesworth et al., 
2003; Yañez-Arenas et al., 2014, 2016). 

Potential drivers of spatial snakebite variation at intermediate scales 
have been quantified to some extent, using anything from simple sta-
tistics such as t-tests (Chippaux, 2017; León-Núñez et al., 2020) to more 
elaborate statistical models such as generalized additive models (GAM; 
Ediriweera et al., 2016), geostatistical binomial logistic models (Edir-
iweera et al., 2018), spatial Poisson models (Suraweera et al., 2020) or 
bottom-up agent-based models (Goldstein et al., 2021); Table 2). Again, 
hotspots tend to occur in rural, agricultural, and poor areas (Chaves 
et al., 2015; Ediriweera et al., 2016; Hansson et al., 2010, 2013; Leynaud 
and Reati, 2009; Schneider et al., 2021; Suraweera et al., 2020), and 
more bites occur in young to middle aged males or in regions with a 
higher male population percentage (Chippaux, 2017; Ediriweera et al., 
2016; Hansson et al., 2010; León-Núñez et al., 2020; Mohapatra et al., 
2011; Suraweera et al., 2020). Relationships between spatial snakebite 
variation and human population density are more complex: usually 
snakebites increase with human population density in rural areas but 
drop off at higher densities associated with urbanization (Chippaux, 
2017; Ediriweera et al., 2016). As expected, snakebite incidence also 
correlates with measures of presence, activity, abundance, or diversity 
of snakes (Bravo-Vega et al., 2019; Goldstein et al., 2021; Hansson et al., 
2013; León-Núñez et al., 2020; Schneider et al., 2021; Suraweera et al., 
2020; Yañez-Arenas et al., 2014, 2016) or with variables that affect 
snake activity. Often snakebite incidence increases during certain sea-
sons when snakes and farmers are both more active such as in rainy or 
harvest seasons (Chippaux, 2017; Ediriweera et al., 2018; Goldstein 
et al., 2021; Hansson et al., 2010; Mohapatra et al., 2011; Molesworth 
et al., 2003; Patiño-Barbosa et al., 2019; Suraweera et al., 2020), during 
flooding events (Ochoa et al., 2020), or at higher temperatures, lower 
altitudes, and higher precipitation (Angarita-Gerlein et al., 2017; Chaves 
et al., 2015; Chippaux, 2017; Ediriweera et al., 2018; Ediriweera et al., 
2016; Goldstein et al., 2021; Hansson et al., 2013; Schneider et al., 2021; 
Suraweera et al., 2020, Table 2). 

While all these studies have made tremendous contributions to our 
understanding of spatial snakebite variation, most have not analysed it 
at spatial resolutions sufficient for on-ground management. The first 
generation of studies on spatial snakebite variation mostly focused on 
broad patterns and identified global hotspot regions or inter-country 
variation (Chippaux, 1998; Kasturiratne et al., 2008; Swaroop and 
Grab, 1954). Such studies enable estimates of snakebite numbers from 
incomplete reporting data and help identify areas where intervention or 
further research is needed. The next suite of studies incorporated simple 
tests of variables that explain spatial snakebite variation at country, 
district, or municipality level in combination with epidemiological data 
on individual risk and temporal patterns (Chippaux, 2017; León-Núñez 
et al., 2020; Leynaud and Reati, 2009). Most of these made use of the 
increasingly fine-scale data on snakebite numbers that became available 
across much of the Americas, India and Sri Lanka relatively recently due 
to changes in reporting requirements or costly efforts in one-time sur-
veys (Chippaux, 2017; Ediriweera et al., 2016) or novel health surveys 
(Ediriweera et al., 2016; Mohapatra et al., 2011). These advances led to 
more complex models within these countries utilizing sophisticated 
methods such as generalized linear models (GLM), generalized additive 
models (GAM) and a variety of other frequentist and Bayesian geo-
statistical regression approaches, incorporating an ever-increasing suite 
of gridded spatial data on demography, natural environment, climate, 

*Information given in written form such as tables but could be analysed spatially and/or temporally. 
**small scale studies already summarized in this review are not listed again separately in the table. 
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weather, and topography (Table 2). Several have also included measures 
of snake distributions and abundance as predictors of spatial snakebite 
variation for the first time (Hansson et al., 2013; Yañez-Arenas et al., 
2016). However, such studies are currently restricted to areas with 
better snake or snakebite data, such as the Americas, India and Sri 
Lanka. Furthermore, models of spatial snakebite variation at sufficiently 
fine-scale resolutions for on-ground management and redistribution of 
health care resources (i.e. a resolution of ~5 km or lower) are still 
sparse. The few notable exceptions are recent work in Sri Lanka (Edir-
iweera et al., 2016, 2018, 2019; Goldstein et al., 2021) and Costa Rica 
(Bravo-Vega et al., 2019). Ediriweera et al., (2016) predicted patterns in 
spatial snakebite variation at 1 km resolution, along with describing 
health seeking behaviour patterns (Fig. 4), as well as temporal (Edir-
iweera et al., 2018) and individual level snakebite incidence variation 
(Ediriweera et al., 2019). Goldstein et al., (2021) further investigated 
how annual and daily activity patterns of farmers and snakes overlap to 
cause spatio-temporal fluctuations in snakebite using a bottom-up, 
agent-based modelling approach at 10 m resolution. These approaches 
will likely lead to improvements in local snakebite management in Sri 
Lanka, where snakebite burden is amongst the highest in the World, and 
region specific antivenoms are lacking (Kasturiratne et al., 2008, 2017; 
Keyler et al., 2013). In Costa Rica, Bravo-Vega et al., (2019) used a 
mathematical approach to describe the likelihood of snakebite based on 
the encounter frequency of humans with the most dangerous snake 
species in the area and predicted spatial snakebite variation at a 1 km 
resolution. This approach is more akin to traditional epidemiology, 
where infection rates depend on transmission rates and on host-vector 

interaction frequencies (Peterson, 2014). This research adds to previ-
ous studies describing spatial snakebite variation in Costa Rica using the 
same district level source data but notably downscaled predictions to a 
finer resolution, and is a promising example for many other countries for 
which district-level data also exist (Chippaux, 2017; Hansson et al., 
2013). It also highlights snakebite as an intersection between epidemi-
ology, ecology, and conservation, and the need to consider trans-
disciplinary approaches. Lastly, promising models of other 
human-wildlife conflicts have been created using machine learning al-
gorithms at fine spatial scales (Sharma et al., 2020). Broader application 
of these existing, successful approaches or integration of benefits from 
each of them into a more complex human-snake conflict framework 
requires exploration. 

In general, effective on-ground management of snakebite requires 
relatively fine-scale spatio-temporal models of spatial snakebite varia-
tion, along with identification of demographic groups that are at 
particular risk in any given area (i.e. vulnerable human populations). 
Model resolution needs to be appropriate to the problem in hand, 
appropriate under consideration of computational limitations, and 
reasonable considering currently available baseline data (Williams et al., 
2012). If the resolution is too coarse (e.g. 50 km), the model cannot 
accurately inform management actions at a relevant scale. If it is too 
fine, it increases computational demand without adding any useful 
additional information. For example, both snakes and humans can easily 
travel a few kilometres per day and patterns at resolutions finer than this 
will be diluted by frequent dispersal from neighboring cells. For 
country-wide snakebite management, a 1 km resolution is likely suffi-
cient to accurately describe relevant landscape and population features 
that influence human and snake population dynamics and movement. 
However, some purposes, such as targeted provision of personal pro-
tective equipment amongst different farmers in a village might benefit 
from extremely fine scale predictions (a few meters) of risk and inci-
dence. The scale of analyses needs to be finely tuned to match the 
planned application. At the appropriate resolution, incidence maps 
could be used to establish snakebite management centers, direct anti-
venom to necessary health centers, plan targeted community education, 
distribute protective equipment to at-risk groups (Ediriweera et al., 
2016), estimate snakebite numbers in any given area, inform manu-
facturers of antivenom demands, and determine which snake species or 
populations should be catered for during antivenom production for that 
area. However, fine-scale models are often difficult to construct due to 
the limited resolution of source data, which is often recorded at second 
or third administrative country subnational level. The amount of work 
required to make the fitting of fine-scale models possible varies 
regionally and nationally but generally demands better, standardized, 
spatially referenced reporting systems for snakebite. 

For example, snakebite is a reportable disease across much of Latin 
America as of 2000 (Chippaux, 2017); however, enforcement is difficult 
and many victims still seek traditional healers instead of health centers 
(Ediriweera et al., 2016). The situation in Africa is much worse: few 
countries have official reporting systems (e.g. the Kenyan Wildlife Ser-
vice) or representative household surveys (Cameroon (Alcoba et al., 
2021); and a very large proportion of victims attend traditional healers 
instead of health centers (Newman et al., 1997). Across South and 
South-East Asia, India and Sri Lanka have high quality data collected 
either once-off or even consistently across years, and at a useful spatial 
scale through standardized household surveys (Ediriweera et al., 2016; 
Mohapatra et al., 2011). Similarly, Nepal has recently begun represen-
tative surveys (Alcoba et al., 2021). However, such surveys are 
effort-intensive and costly - most countries in the region have limited 
information and research relies on individual hospital records to fill 
knowledge gaps (Kasturiratne et al., 2008). The latter usually only cover 
a small proportion of hospitals and victims (Fox et al., 2006) and are not 
spatially representative (Kasturiratne et al., 2008). Recently, progress 
has been made to develop appropriate survey methodologies to assess 
country-wide spatial snakebite variation, and these methodologies have 

Fig. 4. Health seeking behaviour pattern versus envenoming incidence in Sri 
Lanka adapted from Ediriweera et al., 2016; 2017. Individual cases are mapped 
on an envenoming bite incidence map of Sri Lanka. Black triangles show 
modern medical treatment seeking behaviour, blue triangles show traditional 
medical treatment seeking behaviour. 
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already been used across two countries in South Asia (Nepal) and Africa 
(Cameroon; Alcoba et al., 2021). Funding and infrastructure to carry out 
such surveys is limited in many developing countries (Kasturiratne et al., 
2008). Ideally, data from surveys, hospital admissions and health au-
thority reporting systems would directly feed into a central global 
database managed by WHO; however, until better reporting systems are 
established, several other region-specific steps could improve our un-
derstanding of spatial snakebite variation. 

Across the Americas, existing information on snakebite at district or 
municipality level could be combined with finer-scale spatial data to 
downscale predictions. In a nutshell, spatial snakebite variation could 
first be predicted at a district scale using variables that are also available 
at a finer scale (e.g. temperature averaged per district vs. temperature 
per 1 km grid cell). Observed relationships could then be ground-truthed 
in selected areas where finer-scale spatial snakebite variation data exists 
and, if broad scale relationships hold true at finer scales, predictions 
could be applied more broadly to high-resolution gridded landscapes. 

In South Asia, some countries have used analyses of representative 
household clusters to create predictions of spatial snakebite variation 
(Ediriweera et al., 2016; Suraweera et al., 2020). Since other countries in 
South Asia are already starting to implement similar multi-cluster 
random survey designs (Nepal; Alcoba et al., 2021), efforts could be 
further expanded to surrounding countries and incidence mapping 
methods from India and Sri Lanka could be applied to create a uniform 
methodology across the region. More complete data needs to be 
collected for most of South-East Asian spatial snakebite variation to 
facilitate this approach. 

Similarly, in Africa new modelling protocols could be developed in 
countries with existing reporting systems. Results could then be 
extrapolated to surrounding countries with a similar range of cultural, 
demographic, and environmental conditions and similar snake species 
composition. For example, Kenya has a comprehensive country-wide 
dataset on snakebite incidence from a human-wildlife conflict 
compensation scheme (Long et al., 2020), which could be used to model 
spatial snakebite variation and apply results preliminarily to the rest of 
Eastern sub-Saharan Africa. Nevertheless, sub-Saharan Africa is cultur-
ally diverse and overall particularly data-poor in this respect despite 
being a hotspot for snakebite. There is an urgent need for further data 
collection in poorly surveyed regions with high snake diversity and 
political instability, such as throughout the notoriously data poor Congo 
Basin. 

The lack of data on snakebite numbers stands in stark contrast to the 
enormous amount of other spatial information that is becoming avail-
able at finer and finer scales. Much of the demographic, climatic, 
topographic, and land cover data needed for spatial snakebite variation 
models exists at an extremely fine-scale across most of the globe, 
sometimes at resolutions down to 10m (Goldstein et al., 2021). World-
Pop (Tatem, 2017; WorldPop, 2021) has 100m resolution data on 
human population density, births, age and sex structures, pregnancies, 
and many other demographic factors for most countries. Global climate 
data exists at 1 km resolution (Fick and Hijmans, 2017; WorldClim, 
2021). The European Space Agency has global data on land cover classes 
and vegetation characteristics at 300m resolution (ESA, 2017; Fuster 
et al., 2020). The list of high-quality spatial datasets is long. Considering 
that 1 km would likely be an effective resolution for spatial snakebite 
variation models, research on the topic lags behind current GIS and 
computing capacities. Improved data collection on spatial snakebite 
variation is the single most urgent step that would allow us to catch up 
on this lag, followed by snake occurrences and abundance data. 

We have come a long way in understanding spatial snakebite vari-
ation around the world and within countries but need to make sub-
stantial improvements in data collection, model resolution, global 
consistency of modelling approaches and synchronization of data 
streams and methodologies. 

6. Vulnerable human populations and access to life-saving 
treatments 

Envenomation by a snakebite is a medical emergency that requires 
rapid access to life-saving treatments (antivenom, respiratory support). 
Delay to treatment has been shown to increase likelihood of complica-
tions and death (e.g. da Silva Souza et al., 2018; Iliyasu et al., 2015). 
While the causes of these delays can be numerous (Banes et al., 2021) 
the time taken to reach the treatment facility from the patient household 
(or biting site) is critical and has been shown to greatly impact health 
outcomes (Habib and Abubakar, 2011). Unfortunately, health care ac-
cess is particularly poor in developing countries, where snakebite is most 
common, and varies substantially across and within countries and 
amongst social classes. Identifying vulnerable populations from both a 
demographic and spatial perspective is an essential basis for adequate 
distribution of resources. It has been long recognized that modelling 
physical accessibility to healthcare can be instrumental for under-
standing the population coverage of a given health service, identifying 
vulnerable populations, and optimizing health resource allocation. 
Ways of modelling access to healthcare are numerous and can differ 
greatly in terms of the required spatio-temporal data (Delamater et al., 
2012; Neutens, 2015; Paez et al., 2019). In low- and middle-income 
countries where patients must often use a combination of types of 
transport, and often walk to reach care, modelling approaches based on 
least-cost path are particularly well suited (Ray and Ebener, 2008). 
These approaches typically make use of local travelling constraints (e.g., 
terrain, rivers, barriers to movement) and infrastructures (e.g. road 
network), associated with the care-seeking behavior (modes and speeds 
of transport) of the target population, to output a raster of travel time to 
the nearest health service. Applications of least-cost methods have been 
done notably to optimize access to emergency obstetric and neonatal 
care (Chen et al., 2017; Ebener et al., 2019; Kim et al., 2020), to optimize 
deployment of community health workers (Oliphant et al., pre-print), to 
assess access to vaccination centers (Joseph et al., 2020) and intensive 
care units (Barasa et al., 2020), and to model access to emergency ser-
vices (Ahmed et al., 2019). 

Once a travel time model is available, its overlay with the spatial 
distribution of the target population can inform about population 
coverage and the location of populations distant from the needed 
treatments. Combining travel time with additional spatial criteria (e.g. 
health system metrics, socio-economic characteristics of the population, 
disease burden) can enable the modelling of vulnerable populations. To 
model hotspots of population vulnerable to snakebite envenoming at 
global scale, Longbottom et al. (2018) combined range maps for medi-
cally important venomous snake species, travel time to urban centers (as 
a proxy for geographic access to care), health care quality index (as a 
proxy metric for severe snakebite-related outcomes), and antivenom 
availability. However, improving access to snakebite treatment at na-
tional or sub-national scale through micro-planning usually requires 
higher-resolution spatial data. A small-area mapping approach to 
snakebite has been pioneered in Costa Rica by Hansson et al. (2013) who 
modelled realistic travel time to health facilities and ambulance stations, 
together with habitat suitability maps for Bothrops asper, to identify 
populations with need of improved treatment access. A similar approach 
is currently being applied in Cameroon and Nepal to model vulnerable 
populations and optimize access to antivenom (Alcoba et al., 2021). In 
particularly difficult terrain such as the Amazons, understanding the 
extent to which the population is unable to rapidly access adequate care 
after a snakebite can trigger radically different solutions, such as anti-
venom delivery by drones (Meier and Bergelund, 2017). 

As discussed earlier, models of spatial snakebite variation can be 
adequately tackled at 1 km or coarser resolution for some purposes, but 
accessibility modelling typically requires working at 100m or even 30m 
(e.g. Hierink et al., 2020) resolution. A finer raster resolution allows one 
to capture more realistically the landscape characteristics and in-
frastructures that can influence the movements of care-seeking patients. 
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The recent availability of high-resolution datasets needed to model 
accessibility (openly accessible for most countries from sites such as 
Humanitarian Data Exchange, https://data.humdata.org/) has enabled a 
big push towards the application of geospatial accessibility models. 
However, a notable difficulty in many countries is to access a complete 
data set on the locations of health facilities. Recent projects have facil-
itated access and update of health facilities data (Maina et al., 2019; 
South et al., 2020), but knowing which facilities are effectively treating 
snakebite and have antivenom availability remains a challenge in most 
countries (see Potet et al., this issue). Notably, WHO is currently 
compiling data on health care facilities in several countries in Eastern 
and Western sub-Saharan Africa to provide a baseline for a targeted 
antivenom stockpiling project that, if successful could be expanded 
across this and other regions. 

The nascent use of high-resolution accessibility modelling to better 
understand the population at risk of snakebite envenoming holds great 
promises. When data on spatial snakebite variation, spatial distributions 
of venomous snakes, and antivenom availability are more widely 
available, the modelling of vulnerable population coupled to accessi-
bility modelling can be a game changer for planning and optimizing 
SBE-related care in affected countries. This also fits the scope of the 
“precision global health” (Flahault et al., 2020; Sheath et al., 2020) 
agenda that seeks, notably, to enhance effective resource allocation 
through use of high-resolution spatio-temporal data and innovative 
digital tools. 

7. A changing world: the effect of land use change and climate 
change on human-snake interactions 

Just as snakebite risk and incidence change with season, weather and 
time of day depending on human and snake activity patterns, they also 
show long-term temporal trends based on changes in climate, weather 
anomalies (Ediriweera et al., 2018) and human land use. Notably, this is 
not only of medical relevance, but also poses important challenges to 
conservation (Lara-Galván et al., 2020). As with other human-wildlife 
conflicts, the general public usually perceives snakes as a threat, but is 
less aware that they themselves also pose a threat to wildlife (Nyhus, 
2016). Many snakes are International Union for Conservation of Nature 
(IUCN) listed (IUCN, 2020): out of those listed by WHO, three are 
considered critically endangered, nine endangered, 19 vulnerable, seven 
near threatened, 11 data deficient, and 85 have not been assessed. This 
does not yet include any species only listed under groupings such as 
‘Micrurus species’, which have been suggested to be particularly 
vulnerable to climate change (Terribile et al., 2018) and achieving 
conservation goals can be difficult for organisms involved in 
human-wildlife conflicts (Madden, 2004). 

Anthropogenic climate change will affect snake distributions and 
abundance, just as it affects many other organisms. Many animals, 
including snakes, are predicted to shift their ranges into higher latitudes 
as the climate warms, and correspondingly, contract their ranges at low 
latitudes (Behrooz et al., 2015; Hickling et al., 2006; Nori et al., 2014). 
For wide ranging species, which tend to have broader environmental 
tolerances (Pintor et al., 2015), this trend may not be of conservation 
concern, especially if the overall size of suitable area remains similar. 
However, from a human-snake interaction perspective, increases in 
snakebite risk can occur if snake ranges shift towards more densely 
populated areas or previously less exposed populations (Nori et al., 
2014). Snake range shifts will also require changes in antivenom supply 
logistics as affected human populations shift with them. Such shifts will 
likely coincide with shifts in many vector-borne diseases (Campbell 
et al., 2015), resulting in a substantial challenge for global disease 
management (Lafferty, 2009). For range-restricted species and those 
associated with very specific habitats (e.g. mountain tops or specific 
vegetation; Behrooz et al., 2015; Freeman et al., 2018), climate change 
may pose a higher risk because limited dispersal ability and habitat 
fragmentations may hinder shifts in response to these changes (Terribile 

et al., 2018; Vasudev et al., 2015; Yousefi et al., 2015). Considering the 
concentration of range-restricted species within many taxa in the tropics 
(Pintor et al., 2015; Stevens, 1989), the threat of climate change to snake 
species and the threat of snakes to humans coincide in similar areas, i.e. 
in tropical developing countries. Understanding how snake ranges will 
change is crucial to future-proof snakebite management tactics. 

Climate change may also affect snake abundance and activity pat-
terns at a more local scale, thereby increasing snakebite risk. However, 
as we barely understand current patterns in snake abundance and ac-
tivity, further research is urgently needed to assess how patterns will 
change in the future. For example, snake abundance and activity may 
increase locally because of longer warm or rainy seasons (DeGregorio 
et al., 2015; Ediriweera et al., 2018; Moreno-Rueda et al., 2009), 
breeding seasons could shift or reproductive output could change 
(Brown and Shine, 2007; Halupka and Halupka, 2017; Henle et al., 
2008; Najmanová and Adamík, 2009), warmer temperatures could make 
snakes more active and likely to bite (Ediriweera et al., 2018; Schieffelin 
and de Queiroz, 1991) or snakes could change their daily activity pat-
terns to make best use of favorable temperatures (Gordon et al., 2010; 
Levy et al., 2019). This could lead to increased human exposure, expo-
sure at different times of day, or in different seasons. Climate change is 
also predicted to lead to more extreme weather anomalies (Mirza, 2003; 
Seneviratne et al., 2012; Stott, 2016). Weather anomalies (e.g. in 
maximum relative humidity) have been shown to coincide with changes 
in snakebite prevalence (Ediriweera et al., 2018). 

Another dynamic aspect of human-snake interactions is human land 
use and how it changes in response to population growth, infrastructure 
development, changes in resource exploitation, or expansion of farming 
systems (Lamarque et al., 2009; Nyhus, 2016). For example, snakebite is 
usually rarer in densely populated urban areas (Ediriweera et al., 2016) 
and urbanization could lead to local decreases in snakebite prevalence. 
On the other hand, snakebite incidence in rural farming systems is high 
(Hansson et al., 2010, 2013; León-Núñez et al., 2020; Suraweera et al., 
2020) and varies amongst different crops (Goldstein et al., 2021). 
Certain crop expansion and changes in farming practices could lead to 
increased snakebite prevalence, while mechanization of farming prac-
tices could, conversely, reduce exposure to snakes. Human-wildlife 
conflict also often increases with deforestation (Lamarque et al., 2009; 
Schneider et al., 2021) and in border-country to remnant forests and 
protected areas (Hansson et al., 2013; Sharma et al., 2020) because 
animals are forced to leave their natural habitat and use anthropogenic 
landscapes. For species that are incapable of using anthropogenic 
landscapes, this might lead to decreases in suitable habitat and short 
term increases in human encounters as they search for new suitable 
habitat (Acharya et al., 2017; Distefano, 2005). For species that profit 
from human landscapes or adapt easily to modified landscapes, it likely 
leads to increases in population numbers and long term increases in 
human exposure (Arias-Rodríguez and Gutiérrez, 2020; Löwenborg 
et al., 2010; Urbina-Cardona et al., 2008). Consequences for snakebite 
management are likely complex and depend on the species composition 
of any given landscape as well as the type and spatial patterns in land use 
change (e.g. broad scale conversion of natural habitats versus changes in 
patchiness in mosaic landscapes, proximity to protected areas, etc.; 
Acharya et al., 2017). Land use change itself is difficult to predict 
because it is based on complex drivers such as human decision-making 
processes and government policies (Hurtt et al., 2020; Li et al., 2017; 
Veldkamp and Lambin, 2001; Xie et al., 2014). However, there is a wide 
suite of literature and methods on land use change that could be inte-
grated into efforts to manage snakebite into the future (Veldkamp and 
Lambin, 2001). 

A complete review of the literature on land use change is out of the 
scope of this article, however, some examples are worth discussing. For 
example (Amici et al., 2017), used machine-learning algorithms to es-
timate the likelihood of land cover change based on previously observed 
conversion patterns. This approach is comparably low-effort because it 
uses existing satellite imagery, land use classifications and freely 
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available spatial predictors in combination with well-established ma-
chine learning approaches. At the other end of the effort-scale are 
methods that document detailed decision-making patterns by individual 
landowners and governments to predict land conversion probabilities, 
often in combination with a land suitability analysis (Hurtt et al., 2020; 
Li et al., 2017; Veldkamp and Lambin, 2001; Xie et al., 2014). Similarly 
complex models have recently been developed at global scales, for 
example land use change for 2050 and 2100 for land types such as 
forests, grasslands, croplands, urban, and bare areas at 1 km resolution 
(Li et al., 2017), or historic and future land use classification from 850 to 
2100 at 25 km (Hurtt et al., 2020). Existing predictions of land use 
change could be used to describe aspects relevant to human-snake in-
teractions. For example, areas that have a high potential for 
smallholder-irrigated agriculture or are predicted to be changed to 
cropland have a higher chance of being converted to cropping systems 
that may increase human-snake interactions. However, for many re-
gions, models of land use changes specifically relevant to human-snake 
interactions do not yet exist or not at suitable scales. Creation of new 
land use change probability maps that estimate change in specific pa-
rameters that might affect spatial snakebite variation would be highly 
beneficial. This is a major task but could feed into many other human-
itarian aid efforts and even guide land use change planning and pro-
tected area management to help avoid worst-case scenarios for humans 
as well as for biodiversity. Ultimately, such land use change models, 
snake ENMs, snakebite incidence models, and analyses of healthcare 
accessibility could all feed into ‘multiple objective planning’ research, 
which aims to find best compromises for biodiversity, cultural, health, 
and economic objectives during land development planning 
(Álvarez-Romero et al., 2021). 

8. Increasing the spatial resolution of venom variation to inform 
antivenom production and use 

Snake venoms are sophisticated and complex mixtures of proteins 
that play important roles in prey acquisition and, to a lesser degree, self- 
defense (Daltry et al., 1996; Kazandjian et al., 2021). For many snakes, 
venoms are the primary mode of securing prey and hence have under-
gone strong selection pressures to function optimally depending on prey 
type and habitat (Healy et al., 2019; Sunagar and Moran, 2015), and to 
fulfill the specific function required (e.g. prey paralysis, digestion; (Fry, 
2015; Fry et al., 2012; Kardong, 1982). Prey type, availability, and snake 
habitat varies geographically, especially for wide-ranging snakes (Daltry 
et al., 1996): consequently, different snake populations often evolve to 
have different arsenals of venom proteins between different geographic 
locations to optimize prey acquisition (Strickland et al., 2018). For 
example, pooled venom samples of Bitis arietans, a medically important, 
wide-ranging species in Africa with substantial phylogeographic differ-
entiation (Barlow et al., 2013), vary in their protein profile, antibody 
cross-reactivity, and enzyme activity between Saudi Arabia, Nigeria, 
Ghana, Malawi, Tanzania, and Zimbabwe (Currier et al., 2010). Venoms 
of additional category 1 species Calloselasma rhodostoma, Bothrops asper, 
Bothrops atrox, and Crotalus scutulatus, vary substantially across their 
observed ranges (Alape-Girón et al., 2008; Daltry et al., 1996; Sousa 
et al., 2018; Strickland et al., 2018; Zancolli et al., 2019). Similarly, 
geographic variation in venom composition and immunology varies 
geographically in all ‘Big Four’ snake species of India (Echis carinatus, 
Naja naja, Daboia russelii, and Bungarus caeruleus which has the highest 
snakebite mortality in the World (Kalita et al., 2018; Kasturiratne et al., 
2008; Mukherjee, 2020; Oh et al., 2017; Patra and Mukherjee, 2020; Pla 

Fig. 5. Sample locations for studies on the 
geographic variation in venom composition 
in the ‘Big Four’ snakes across the Indian 
sub-continent: the Indian spectacled cobra 
(Naja naja; Mukherjee et al., 2020), the In-
dian krait (Bungarus caeruleus; Oh et al., 
2017), the saw-scaled viper (Echis carinatus; 
Patra et al., 2020), and the Russell’s viper 
(Daboia russelii; Pla et al., 2019). Background 
shows mean vegetation greenness (fraction 
photosynthetic active radiation; https://lan 
d.copernicus.eu/global/products/fapar) 
with greener areas shown as darker shades 
of grey.   
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et al., 2019; Senji Laxme et al., 2021a; Senji Laxme et al., 2021b, Fig. 5). 
Such geographic variation, along with ontogenetic, intra-population, 
and other forms of venom variation, has important consequences for 
snakebite management: antivenom efficacy can vary amongst localities 
depending on which populations were originally used for antivenom 
production and differences in enzyme activity can cause different clin-
ical manifestations of envenomation (Casewell et al., 2014; Chippaux 
et al., 1991; Warrell, 1997). 

Antivenoms are produced using pooled venoms from individuals of 
each species whose venoms they are designed to neutralize. It is, 
therefore, paramount that venoms used in antivenom production 
adequately represent the natural variation found across the geographic 
region where the antivenom will be used, to ensure their specificity and 
generality (Chippaux et al., 1991). In reality, however, this is rarely the 
case. Venom for antivenom production often comes from captive snake 
populations rather than being collected in the field (WHO, 2010a). In 

either case, the origin of these populations is usually of an opportunistic 
rather than planned nature. Furthermore, many snakes have no specific 
antivenom produced against them at all (Longbottom et al., 2018) and 
their bites are treated with antivenoms developed against related spe-
cies, which is problematic since intra-genus venom variation can be 
substantial and is often as poorly understood as intraspecific variation 
(Queiroz et al., 2008). Part of the reason for these shortcomings is that it 
is difficult and expensive to obtain representative venom samples from 
all species and populations across large geographic regions. The other 
reason is that we simply do not have a good understanding of how 
venom composition varies geographically within most species (and 
sometimes amongst different species) and, therefore, cannot chose 
representative venom collection localities objectively. A resulting 
known unknown is that we can rarely say where an antivenom is 
effective or ineffective because of limited efficacy testing (Keyler et al., 
2013; WHO, 2010a). 

Fig. 6. Example of how different hypothetical intraspecific venom lineages or venom expression types could be distributed within a species’ overall range. A: 
Location of the sampled lineages P1, P2, and P3; B: Each venom lineage may occur throughout the species’ distribution (wide-spread diversity in expression of venom 
types); C: geographically distinct lineages could occupy similar proportions of the species’ range; D: venom composition could change gradually between lineages; E: 
some lineages could be locally restricted because of boundaries to gene flow (thick black lines) or different sized areas of distinct habitat types relevant to venom 
expression; F: additional unsampled lineages may be present, such as isolated island [P4] or distinct habitat fragment [P5] lineages. 
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WHO’s ‘guidelines for the production and validation of antivenoms’ 
outline solutions to the issue of poorly tested antivenoms with poorly 
documented production methodologies (WHO, 2010a, 2018): recom-
mendations include the creation of region-specific polyvalent anti-
venoms, the careful consideration of appropriate venoms used in 
antivenom production, pre-clinical tests of neutralization efficiency of 
relevant region-specific venoms, and traceability of venom batches as 
well as consistency amongst batches. Despite ongoing efforts from WHO 
to test the quality of available antivenoms, poor quality antivenoms still 
dominate the current market. To put WHO’s guidelines into broader 
practice, we require detailed studies of geographic venom variation, 
especially for snakes with large geographic ranges. As mentioned above, 
geographic venom variation has been studied in some snakes but mostly 
at a relatively coarse resolution. Venom is usually compared between 
different populations from extreme corners of a snake’s distribution or 
from a subset of countries or states the species occupies (Chang et al., 
2013; Currier et al., 2010; Mukherjee, 2020; Oh et al., 2017; Pla et al., 
2019; Sousa et al., 2018). Few studies have comprehensively assessed 
venom variation at a fine-scale across the whole range of a species 
(Daltry et al., 1996; Strickland et al., 2018). Overall, our understanding 
of fine-scale geographic venom variation is limited. For example, the 
venom of a hypothetical species may be different between three pop-
ulations P1, P2, and P3 (Fig. 6). These populations may represent three 
distinct clades that each cover a third of the species’ distribution. 
Alternatively, venom composition may change gradually between the 
populations and be slightly different at any given location. Another 
possibility is that some population are restricted to small areas delin-
eated by geographic boundaries to gene flow or that each have a distinct 
habitat type, while others are wide-ranging. There may even be addi-
tional distinct venom lineages (e.g. isolated island lineages) that have 
not yet been discovered and whose venom is not neutralized by anti-
venom based on the three known lineages. Lastly, different venom lin-
eages can occur throughout a snake’s distribution based on fine-scale 
environmental patterns (Strickland et al., 2018; Zancolli et al., 2019) or 
diversity of venom expression within a population (Pintor et al., 2011) 
instead of occupying distinct parts of the distribution. 

A good understanding of geographic venom variation can benefit 
snakebite management in a multitude of ways (Chippaux et al., 1991; 
Fry et al., 2003; Senji Laxme et al., 2021b). Firstly, it allows us to 
determine where current antivenoms are likely to work based on the 
origin of venom used for their production (Senji Laxme et al., 2021b). 
Potential gaps in efficacy can be identified and used to target additional 

venom collection for efficacy assessments or new antivenom develop-
ment where necessary. Secondly, new antivenom regions could be 
defined based on the boundaries of known venom lineages and 
region-specific antivenoms produced to maximize efficacy and minimize 
required volumes (Keyler et al., 2013). Thirdly, studies on taxonomy and 
on drivers of venom evolution could profit from the observed patterns 
and use them to predict likely patterns in variation for snakes that have 
not yet been studied. This last point is particularly important consid-
ering the high cost, effort, and risk involved in surveying snake pop-
ulations across vast, remote, and often politically unstable regions. 

Distribution estimates based on predictive models could function as a 
basis for venom sampling efforts. For example, venom lineages may be 
similar across continuous patches of suitable habitat, while low suit-
ability could function as a geographic barrier separating distinct line-
ages. Individual sampling locations from each suitable habitat patch (at 
appropriate scales) could be prioritized for venom collection, followed 
by more fine-scale collection efforts if resources allow (Fig. 7). Recent 
studies have used ENMs to estimate the distribution of individual ge-
netic lineages within a clade based on cost-distance from known loca-
tions (Rosauer et al., 2015, 2016) and a similar approach could be used 
to estimate the distribution of venom lineages. In crisis scenarios where 
a new representative antivenom needs to be produced quickly or re-
sources are limited, distinct suitable habitat patches could even be used 
as a proxy for potential venom lineages needed for representative venom 
collection and verified later (Fig. 7). Alternatively, distinct venom lin-
eages can be modelled separately to study environmental drivers of 
venom variation (Strickland et al., 2018). Care must be taken to not 
confuse genetic lineages with venom lineages, as geographically distinct 
venom lineages have been shown to occur even within distinct genetic 
subpopulations (Strickland et al., 2018; Zancolli et al., 2019). Note that 
there are many more challenges involved in the improvement of anti-
venoms that are out of the scope of this article. Only the spatial com-
ponents have been discussed here. 

9. Conclusion 

Successful snakebite mitigation and management requires a fine- 
scale understanding of spatial patterns in snake distributions, snake-
bite incidence, human population vulnerability, and medical infra-
structure globally. Considerable efforts must be taken to collect 
additional data within these categories and to streamline data integra-
tion and collaboration between governmental bodies, the scientific 

Fig. 7. Example of how the species Bungarus fasciatus might be split up (thick black lines) into potential venom lineages based on perceived gaps in its distribution 
and known dispersal barriers (e.g. oceans) using (A) known occurrence records (red dots) and expert derived range estimates (pink shaded area) or, alternatively, 
using (B) habitat suitability estimates to detect potential distribution gaps. 
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community and the general public. Only then can sophisticated spatio- 
temporal analysis methods be applied to accurately predict spatio- 
temporal variation, which will inform successful on-ground manage-
ment and resource allocation. Until such systems are implemented, 
interim solutions can function as preliminary means to guide actions. 
Existing data collection and model methods in example countries can be 
expanded to surrounding regions. Research on snake biology and 
human-snake interactions can add value to existing models. Citizen 
science projects can test-run targeted elicitation of data collection in 
under-sampled areas using novel vetting protocols, possibly including 
image recognition. Lastly, snake conservation, education, and land use 
management can mitigate potential future increases in human-snake 
conflict. 

We have outlined knowledge gaps and approaches to reduce them for 
a wide variety of spatial components of the global snakebite crisis. The 
key steps needed for progress are summarized from a practical, as well as 
academic perspective, in Text Box 1. However, successful snakebite 
management and prevention is influenced by many other, non-spatial 
factors that are discussed elsewhere in this special issue. These include 
topics such as antivenom production and quality control, community 
engagement strategies, mobilization of financial resources, improve-
ments in snakebite first aid, medical personnel training, and medical 
protocols, amongst others. 

We hope that this review will motivate future research on the topic, 
promoting additional transdisciplinary collaboration and innovation to 
expand the information and methods suggested here. The gap between 
traditional epidemiology, ecology, conservation biology, and informa-
tion technology is worth narrowing to unite strengths against snakebite. 
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Ferro, C., López, M., Fuya, P., Lugo, L., Cordovez, J.M., González, C., 2015. Spatial 
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Achieng, V.O., Ndung’u, E., Okoth, P., Muñiz, M., 2020. Spatial access inequities and 
childhood immunisation uptake in Kenya. BMC Publ. Health 20, 1–12. 

Kalita, B., Mackessy, S.P., Mukherjee, A.K., 2018. Proteomic analysis reveals geographic 
variation in venom composition of Russell’s Viper in the Indian subcontinent: 
implications for clinical manifestations post-envenomation and antivenom 
treatment. Expet Rev. Proteonomics 15, 837–849. 
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O’Connor, B., Bojinski, S., Röösli, C., Schaepman, M.E., 2020. Monitoring global changes 
in biodiversity and climate essential as ecological crisis intensifies. Ecol. Inf. 55, 
101033. 

Ochoa, C., Bolon, I., Durso, A.M., Ruiz de Castañeda, R., Alcoba, G., Babo Martins, S., 
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