
Landscape-scale accessibility of livestock to tigers:
implications of spatial grain for modeling predation risk to
mitigate human–carnivore conflict
Jennifer R. B. Miller1,2, Yadvendradev V. Jhala2, Jyotirmay Jena3 & Oswald J. Schmitz1

1School of Forestry & Environmental Studies, Yale University, New Haven, Connecticut 06511
2Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
3Satpuda Maikal Landscape Programme, WWF-India, Mandla, Madhya Pradesh 481661, India

Keywords

Carnivore conservation, human–wildlife

conflict, India, livestock depredation,

predation risk modeling, resource selection

function.

Correspondence

Jennifer R. B. Miller, School of Forestry &

Environmental Studies, Yale University, 195

Prospect Street, New Haven, CT 06511, USA.

Tel: +001 707 815 0469;

Fax: +001 203 432 3929;

E-mail: jennie.r.miller@gmail.com

Funding Information

Funding for this study was provided by the

American Institute for Indian Studies (AIIS),

American Philosophical Society, Association

of Zoos & Aquariums (AZA), John Ball Zoo

Society, Yale Tropical Resources Institute, and

the US National Science Foundation (NSF).

Received: 19 October 2014; Revised: 26

January 2015; Accepted: 27 January 2015

Ecology and Evolution 2015; 5(6):

1354–1367

doi: 10.1002/ece3.1440

Abstract

Innovative conservation tools are greatly needed to reduce livelihood losses and

wildlife declines resulting from human–carnivore conflict. Spatial risk modeling

is an emerging method for assessing the spatial patterns of predator–prey inter-

actions, with applications for mitigating carnivore attacks on livestock. Large

carnivores that ambush prey attack and kill over small areas, requiring models

at fine spatial grains to predict livestock depredation hot spots. To detect the

best resolution for predicting where carnivores access livestock, we examined

the spatial attributes associated with livestock killed by tigers in Kanha Tiger

Reserve, India, using risk models generated at 20, 100, and 200-m spatial grains.

We analyzed land-use, human presence, and vegetation structure variables at

138 kill sites and 439 random sites to identify key landscape attributes where

livestock were vulnerable to tigers. Land-use and human presence variables con-

tributed strongly to predation risk models, with most variables showing high

relative importance (≥0.85) at all spatial grains. The risk of a tiger killing live-

stock increased near dense forests and near the boundary of the park core zone

where human presence is restricted. Risk was nonlinearly related to human

infrastructure and open vegetation, with the greatest risk occurring 1.2 km

from roads, 1.1 km from villages, and 8.0 km from scrubland. Kill sites were

characterized by denser, patchier, and more complex vegetation with lower visi-

bility than random sites. Risk maps revealed high-risk hot spots inside of the

core zone boundary and in several patches in the human-dominated buffer

zone. Validation against known kills revealed predictive accuracy for only the

20 m model, the resolution best representing the kill stage of hunting for large

carnivores that ambush prey, like the tiger. Results demonstrate that risk mod-

els developed at fine spatial grains can offer accurate guidance on landscape

attributes livestock should avoid to minimize human–carnivore conflict.

Introduction

Many large carnivores remain perilously close to extinc-

tion despite concerted conservation efforts (Treves and

Karanth 2003; Walston et al. 2010; Ripple et al. 2014).

Continued human rural population growth, habitat deg-

radation, and wild prey depletion have created frag-

mented, resource-limited landscapes for carnivores.

Inevitably, carnivores seek alternative prey, leading to

livestock losses and consequentially retaliatory killing by

livestock owners (Treves and Karanth 2003; Dinerstein

et al. 2007). One of the most time- and cost-efficient

methods for reducing livestock losses is to avoid grazing

domestic animals in areas where they are highly vulnera-

ble to carnivore attacks (Treves et al. 2011). Thus, identi-

fying the landscape features that facilitate predator access

to prey and increase capture success can offer valuable

insights to help livestock owners avoid losses by directing

livestock into lower-risk areas where animals are less

likely to be killed.

Carnivore species hunt repeatedly in areas characterized

by a similar combination of landscape features where they
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can most easily access and kill prey (Hopcraft et al. 2005;

Laundr�e et al. 2009). For large carnivores, these landscape

features include a mix of land uses, vegetation structure,

human activities, and prey densities (Table 1; Gorini et al.

2012). Prey vulnerability to carnivores is likewise shaped

by prey foraging patterns, habitat preferences, and anti-

predator behavioral responses, such that prey favor areas

where they are less accessible to predation (Brown et al.

1999). Carnivores with similar traits, such as hunting tac-

tic (e.g., ambush or active) and habitat domain (i.e., how

a carnivore uses space and habitat within its home range),

often hunt and kill prey with respect to similar landscape

attributes. This causes prey to exhibit consistent predator

risk responses, creating a tractable spatial distribution of

predator–prey interactions often called the “landscape of

fear” (Preisser et al. 2007; Laundr�e et al. 2010; Miller

et al. 2014).

Identifying high-risk areas requires distinguishing

between where prey are available versus accessible to car-

nivores (Trainor and Schmitz 2014). The mere presence

of prey on the landscape (availability) is not sufficient to

guarantee predator hunting success. Factors such as prey

antipredator behavior and predator hunting tactics influ-

ence the locations where predators can successfully cap-

ture prey (accessibility). When selecting hunting sites,

many large carnivores prioritize prey catchability as much

as or more than prey abundance (Hopcraft et al. 2005;

Holmes and Laundr�e 2006; Balme et al. 2007; Fuller et al.

2007; Laundr�e et al. 2009). Thus, analyses that combine

spatial information on predator–prey interactions with an

understanding of species abundance and distribution can

offer much needed insight to characterize prey accessibil-

ity and spatial risk (Trainor and Schmitz 2014).

Such analyses are traditionally performed with resource

selection functions (RSFs) that relate spatial environmen-

tal data (e.g., habitat features, topography) to the loca-

tions of predators and prey (Johnson et al. 2006; Gorini

et al. 2012). Predation risk modeling enlists RSFs to focus

on the spatial distribution of predator–prey interactions.

Such modeling predicts the probability of a carnivore

attacking prey by relating the environmental features at

interaction sites (determined by encounters or kills)

across landscapes with the number of interaction events

at those sites relative to random sites representing land-

scape availability (Johnson et al. 2006; Treves et al. 2011).

When models are applied to identify landscape locations

of predator–livestock interactions (Treves et al. 2011), the

insights can help to mitigate livestock depredation and

thereby support large carnivore conservation by reducing

retaliatory killing of carnivores by livestock owners (Gerv-

asi et al. 2013; Soh et al. 2014).

The landscape features that best determine prey accessi-

bility can vary over different stages of the hunt. This is

because the heterogeneity of these features changes with

Table 1. Predictor variables used in the study, showing the data source, spatial grain, and evidence of variable importance for livestock depreda-

tion by large Felidae carnivores that ambush prey, especially tigers.

Category Predictor variable (unit)

Data source (spatial

grain of raster) Evidence of effect on predation risk

Human presence Distance to road (m) Survey of India topo maps

from 1978, 1979, 1983, and 1984

Increased risk farther from roads1

Distance to village (m) Kanha Tiger Reserve Forest

Department

Increased risk of farther from villages1

Distance to core (m) Increased risk closer to core2

Land use Distance to nonforest (m) Forest Survey of India

State of the Forests 2009 (24 m)

Decreased risk in open forest1,2,3,4,5;

agriculture poor habitat for tigers6

Distance to scrubland (m) Decreased risk in open forest1,2,3,4,5;

less suitable habitat for tigers6

Distance to moderately

dense forest (m)

Increased risk in dense forest1,2,3,4,5;

high suitable habitat for tigers6; common

habitat type for tigers killing prey7

Distance to very dense

forest (m)

Increased risk in dense forest1,2,3,4,5;

high habitat suitability for tigers6;

common habitat type for tigers killing prey7

Vegetation structure Visibility (m) Increased risk with decreased visibility4,8

but increasing vegetation cover1,2,3

Shrub height (m) Increased risk with increasing vegetation cover1,2,3

Shrub cover (%) Increased risk with greater vegetation cover1,2,3

Shrub patchiness (%) Increased risk with increasing vegetation cover1,2,3

1Soh et al. 2014; 2Karanth et al. 2012; 3Kissling et al. 2009; 4Shrader et al. 2008; 5Valeix et al. 2009; 6Seidensticker 1976; 7Karanth and Sunquist

2000; 8Balme et al. 2007.
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the size of the area (spatial grain or the smallest unit of

study, i.e., pixel or resolution) over which carnivore spe-

cies make decisions (Gorini et al. 2012; Wilmers et al.

2013; Trainor and Schmitz 2014). The first few stages of

the hunt – searching and encountering – may occur over

a broad region of a large carnivore’s home range, span-

ning square kilometers, whereas the final stages of greatest

predation risk – attacking, killing, and consuming – occur

over smaller areas, ranging square meters (Gorini et al.

2012). As the spatial scale of predator and prey decisions

changes throughout the hunting process, different land-

scape attributes may determine whether and how carni-

vores access their prey and hence the resulting probability

of predation (Hebblewhite et al. 2005; Hilborn et al.

2012). For example, the likelihood that elk and wolves

encounter each other across a landscape was most influ-

enced by topography, vegetation type, and resource selec-

tion by the carnivore; but once encountered, the final

stages of hunting and hunting success were primarily

affected by vegetation type alone (Atwood et al. 2009).

Mitigating human–carnivore conflict requires identify-

ing the landscape features that reduce livestock accessibility

and risk of death. As a case example of this process,

we investigated tiger (Panthera tigris) depredation on

livestock. Tiger depredation causes annual household

income losses of up to 80% (Madhusudan 2003). This has

prompted retaliatory killing of 1–22 tigers per year over

the past two decades in many range countries (Inskip and

Zimmermann 2009). With fewer than 3500 tigers left in

the wild, developing risk maps to assist in reducing conflict

may play an important role in helping to stem the species’

decline (Walston et al. 2010).

We provide insight into determinants of livestock

accessibility to tigers, and hence depredation risk, by (1)

developing a statistical model for predicting the spatial

distribution of livestock kills by tigers; (2) identifying

landscape characteristics associated with elevated vulnera-

bility of livestock; and (3) identifying the spatial grain

that best describes the risk of a kill. We map predictions

of risk across the landscape to show how to visualize

spatial hot spots of livestock kills (and hence hot spots

of human–carnivore conflict) as well as validate predic-

tions using an independent dataset of geospatial loca-

tions of livestock kills. We conclude by offering practical

advice for the use of predation risk models in the

conservation and management of large carnivore

species.

Materials and Methods

Study area

The study was conducted in Kanha Tiger Reserve, Mad-

hya Pradesh, central India (Fig. 1), where tigers fre-

quently kill and consume domestic cattle (Bos indicus),

buffalo (Bubalus bubalis), pigs (Sus scrofa), and goats

(Capra aegagrus hircus) throughout the 2074 km2 pro-

tected area. Kanha consists of a 1134 km2 multiple-use

buffer zone, where human residences and activities such

as livestock grazing are allowed, surrounding a 940 km2

national park core zone, where human activities are

restricted. Only the few villages located inside the core

zone are permitted to graze livestock in the core within

designated areas around their villages. The core zone is

inhabited by 8300 people with 6800 cattle compared to

129,300 people with 85,100 cattle in the buffer (estimates

for other livestock were not available; Kanha Tiger

Reserve Forest Department 2012).

Figure 1. Study area within the core and

buffer zones of Kanha Tiger Reserve in

Madhya Pradesh, Central India with respect to

protected area boundaries, roads, and villages.
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Tigers and other large carnivores that use ambush

hunting attack and kill prey within areas of 9–80 m (Sch-

aller 1967; J. Miller, personal observation), suggesting that

carnivore decisions when attacking and killing livestock

occur at these fine spatial resolutions. We therefore exam-

ined landscape features associated with livestock kills at

20, 100, and 200 m, three spatial grains ranging through

and slightly beyond the attack and kill stages of large car-

nivores using ambush hunting. Our focus at such fine

spatial resolutions further offers the kinds of insight nec-

essary to develop spatially informed models of predator–
prey interactions at large landscape scales that will

enhance conservation and management in human-domi-

nated landscapes (Trainor and Schmitz 2014; Trainor

et al. 2014).

We conducted our study in the Kanha Tiger Reserve

core and buffer zones where we were confident tiger and

livestock species were present. Because data on tiger and

prey population occupancy or density were not available

at fine spatial resolutions, we built our models based on

the informed assumption that tigers and livestock were

present throughout the reserve. The Kanha core zone

contains a large, stable population of 70 tigers (Jhala et al.

2014) that maintain home range sizes of 10–102 km2

(Sharma et al. 2010) and move through the park core,

buffer, and the corridors surrounding the protected area

(WWF-India 2011; Sharma et al. 2013). Our field obser-

vations also revealed that at least 84% of sampled sites

contained cattle, buffalo, or goat fecal pellets, suggesting

that livestock graze widely throughout many microhabi-

tats in the area. Because livestock freely move without

herders for half the year when fields are fallow and graze

extensively throughout all accessible vegetation of the

protected area, livestock presence was considered uniform

throughout the landscape. Cattle tracked with GPS collars

(n = 6) roamed a maximum of 2.6 km outside of village

centers (M. Agarwala, unpublished), and we measured

livestock mortalities up to 3.7 km from village centers.

We consequentially restricted the study area to within

4 km of village centers, which included the outer ring of

the core zone and most of the park multiple-use buffer

zone (Fig. 1). All kill and random sites were sampled

within the study area.

Identifying kill and random sites

Between December 2011 and August 2012, we visited live-

stock kills reported by owners for financial compensation

by the Forest Department (Fig. 2). Kill sites (where a tiger

killed an animal) were distinguished from cache sites

(where a tiger dragged and consumed an animal) by drag

and scuff marks and trails of blood and hair. Kill site

location was measured with an average 5 � 2 m accuracy

using a GPS (Oregon 450, Garmin, KS). Carcasses were

identified as tiger kills based on evidence of fresh signs

within 50 m of the kill and cache site. Tigers and leop-

ards have notable differences in the size and shapes of

their signs (Seidensticker 1976; Karanth and Sunquist

1995), and research technicians were trained to identify

signs with high accuracy following the National Tiger

Conservation Authority protocol at the Wildlife Institute

of India (Jhala et al. 2009). Nonetheless, to ensure accu-

rate predator identity, we classified carnivore signs con-

servatively and omitted from analysis any kill sites with

ambiguous carnivore signs or signs that were located far-

ther than 50 m from the kill site. A total of 90% of all

Figure 2. Sampled tiger kill sites and random

sites in Kanha Tiger Reserve with respect to

protected area boundaries and land-use types.
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“confirmed” kills were identified using direct sightings of

the carnivore (25% of kills), pugmarks (64% of kills),

and/or scrapes (2% of kills), which can be clearly distin-

guished between tigers and leopards (Karanth and Sun-

quist 1995). Carnivores occasionally killed multiple

livestock during a single predation event at one site

(n = 30 where 2–5 animals died). These cases were trea-

ted as a single kill to focus data analysis on units of kill

sites (n = 1 per kill event) rather than animals killed

(n = 1 per animal) and to treat data as independent

events.

Hunting site selection by tigers was contextualized

within the landscape by sampling additional random sites

throughout the study area to represent the range of con-

ditions available in the landscape for comparison against

kill sites (Manly et al. 2002; Johnson et al. 2006). The

location of these sites was determined by random points

stratified across a 200-m grid in ArcGIS (v.10.1; ESRI,

Redlands, CA), with one point per cell separated by at

least 200 m so as not to repeatedly sample. Points were

randomly assigned numbers and separated into equal

batches by season (#1–200 for winter, #201–400 for sum-

mer, #401–600 for monsoon). We surveyed a similar

quantity of random sites from each batch each month

(27–40 sites) to avoid temporal bias. We visited as many

sites as was logistically feasible during the study period to

bolster the sample ratio of kill to random sites (Northrup

et al. 2013). No wild or domestic prey carcasses were

observed at random sites.

Land-use and human presence variables

Tigers tend to hunt wild prey (e.g., spotted deer, sambar

deer, wild pigs) in dense forests near short-grass clearings

(Karanth and Sunquist 2000). We therefore expected

that the risk of a kill would increase with the density

and complexity of vegetation. Many cases of previous

livestock kills made by tigers and leopards occurred in

villages (Madhusudan 2003) where livestock are abundant

(Karanth et al. 2012), yet tigers are also known to avoid

areas with intense human activity (Harihar et al. 2007

but see Carter et al. 2012). We predicted that livestock

accessibility would show a threshold relationship to

villages and roads and peak at an intermediate distance

where livestock were vulnerable and humans did not

restrict tiger access. We thus expected that predation risk

from tigers in dense forests would peak at intermediate

distances to humans (and associated livestock).

Landscape variables were measured at each kill and

random site for modeling. We collected spatially explicit

data on environmental and anthropogenic features known

to influence Felidae predator ambush attacks on livestock

(Table 1). These included land-use variables (nonforest

[i.e., agriculture], scrubland, moderately dense forest

[canopy density of 40–70%; Forest Survey of India 2009]

and very dense forest [canopy density of 70% and

above]), and human presence variables (roads, villages,

and boundary of the park core zone). We did not include

topography because previous research in the study area

did not find this variable useful for predicting livestock

losses (Karanth et al. 2012). Three spatial grains for

analysis (20, 100, and 200 m) were tractable units for

field measurements (see next section). Landscape variables

were converted to raster format and rescaled to these spa-

tial grains using the nearest neighbor resampling (Fried-

man et al. 1975). At each spatial grain, we calculated the

distance to each predictor variable (e.g., distance to land-

use types, road, villages, and the core) using the Euclidean

distances from each pixel to the nearest feature. All spatial

calculations were made using the Spatial Analyst toolset

in ArcGIS.

Vegetation structure variables

Vegetation structure can affect the hunting success of

large predators that ambush prey (Table 1). We con-

ducted on-the-ground measurements to characterize vege-

tation structure variables at kill and random sites. These

variables were spatially implicit (sampled at specific sites

rather than continuously across the landscape) and thus

were not included in predation risk RSFs but offered

valuable additional insight into the landscape features

where livestock are vulnerable to tigers. We measured

shrub height, percent shrub cover, shrub patchiness, and

visibility in nested 20-m-, 100-m-, and 200-m-diameter

circular plots (Fig. S1). Measurements were taken in one

central 20-m-diameter subplot and two additional sub-

plots at 40-m intervals along three transects radiating out

from the plot center for a total of seven subplots per site.

The first transect was selected using a random compass

bearing (selected from a list of randomly ordered bear-

ings) and the latter two were placed at 120° intervals to

ensure that vegetation across the area was represented.

Shrub height was measured to the nearest 0.5 m as the

average height of bushy vegetation less than 3 m tall. Per-

cent shrub cover was estimated by eye to the nearest 10%

as the percent of ground area covered by shrubs. Shrub

patchiness represented the variation of shrub vegetation

and was calculated as the standard deviation of shrub

cover (100 and 200-m spatial grain only). Visibility was

measured as the distance at which dense vegetation or

substrate obstructed the outward view of a 1.5-m-tall

animal (livestock) and was recorded from the center of

the random site in the direction of each transect using

a laser rangefinder (RifleHunter 1000; Nikon, Tokyo,

Japan).
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Habitat structure measurements were averaged among

subplots at each spatial grain: measurements from the

central subplot (n = 1) comprised the 20-m-diameter

grain, measurements from the central and interior three

subplots (n = 4) were averaged for the 100 m grain, and

measurements from the central, three interior, and three

exterior subplots (n = 7) were averaged to calculate the

200-m grain. We calculated the mean visibility along the

three transects to find a single visibility value for all spa-

tial grains. Kill and random site averages were then calcu-

lated to obtain independent estimates, which we

examined for differences at each spatial grain using

Mann–Whitney U-tests. All statistical analyses were con-

ducted in R (v.2.15.3, R Project Development Team,

www.r-project.org).

Modeling and mapping predation risk

Data were gathered on seven spatially explicit (human

presence and land use) biologically meaningful predictor

variables identified in the literature and from field obser-

vations (Table 1). To determine which of these variables

were most strongly associated with kills, we built logistic

regressions for each spatial grain, using kill and random

sites as binary responses of 1 and 0, respectively (Burn-

ham and Anderson 2002; Trainor and Schmitz 2014; Tra-

inor et al. 2014). To avoid collinearity between variables

in the model, we calculated Spearman’s correlation coeffi-

cients for pairs of variables and excluded variables with

high correlations (rs > 0.6). The distance to nonforest was

strongly correlated (rs = 0.7) with both the distance to

village and the distance to very dense forest at all spatial

grains (Table S1–S3) and we therefore excluded this vari-

able. We expected that distances to road, village, and

scrubland would have a threshold relationship such that

effects might decrease in a nonlinear direction at some

distance, and we found that including the quadratic struc-

tural form of each predictor lowered the global model

AIC by ≥2 (Draper and Smith 1993; Burnham and

Anderson 2002). A total of six variables with nine terms

were included in models: distances to village, village2,

road, road2, core boundary, scrubland, scrubland2, mod-

erately dense forest, and very dense forest. These noncor-

related predictor variables were used to build a global

model for the 20, 100, and 200-m spatial grains.

Starting with the global models, we generated and

ranked models with all combinations of the biologically

meaningful predictor variables based on the corrected

Akaike’s information criterion (AICc) to account for small

sample size (Burnham and Anderson 2002). As no single

top model emerged (Akaike weight > 0.90), we then

averaged the models to produce final logistic regression

models (Table S4). We compared the contribution of each

variable in the averaged model using relative importance,

which represents the sum of the AICc weights for each

predictor variable over all the included models where the

variable appeared (Burnham and Anderson 2002). Relative

importance ranges from 0 to 1, with importance values of

1 indicating that the variable made strong contribution to

the model. We examined the relationship of each predictor

variable to the predicted probability of predation risk while

holding other variables constant at their means. Multimod-

el inference modeling was carried out using the R MuMIN

package (K. Barton 2013, http://cran.r-project.org/web/

packages/MuMIn/MuMIn.pdf).

To illustrate the spatial patterns of livestock kill proba-

bilities, we used models to map predicted predation risk

across Kanha using ArcGIS. Predation risk ranged from 0

to 0.77 and was divided equally into four categories of

risk for mapping.

Model validation

We validated whether models could accurately predict

future kills by comparing model predictions against an

independent, spatially explicit dataset of 70 livestock

killed by tigers. Data on kill sites used for model valida-

tion were collected between September 2012 and October

2013, after our original collection of data used to develop

and train the models. We located and identified tiger kill

sites following similar methods as the original training

data, with the added advantage that we set camera traps

for 24–48 h at livestock kills to help confirm carnivore

species identity (n = 16). The GPS coordinates of kills

were recorded at the carcass cache site rather than the

attack site. We therefore used zonal statistics in ArcMap

to extract the maximum risk value within a buffer area

around each kill. The buffer was set equal in size to the

average drag length (33 m) measured during sampling of

our original dataset used to develop the models.

We validated model predictions using randomization

(permutation) tests (Edgington 1995). Randomization tests

are a powerful way to test for differences among data when

the underlying frequency distribution of the data is

unknown or likely not to be normal. Such a test examines

the probability of obtaining an observed value from a distri-

bution of randomly sampled values. We tested whether the

model for each spatial grain designated the validation sites

as true “kills” (vs. “no kills”) relative to randomly selected

sites. Tests were carried out in several stages (Fig. S2).

First, using our original dataset, we produced a binary

map for each model showing the locations where risk was

considered high enough for kills to occur. We followed a

robust statistical technique used in species distribution

modeling (Liu et al. 2013) to identify the threshold value

used by each model to classify a risk value as either a
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“kill” or “no kill”. We calculated the threshold risk value

that maximized the sensitivity and specificity (the model’s

ability to accurately select true “kills” and avoid false

“kills”) in the receiver operating characteristic (ROC)

curve of each model (Fielding and Bell 1997, Liu et al.

2013). At each spatial grain, we then classified map pixels

with risk values less than the model’s threshold value as

“no kill” and pixels with risk values equal to or greater

than the threshold value as “kill”.

We next overlaid the locations of validation kill sites

and randomly selected sites onto the pixels of the binary

maps. We generated a random distribution by randomly

selecting 1000 batches of 70 pixels (equal to the sample

size of validation kill sites). We then counted the number

of pixels with validation and random sites designated as

“kills”. The model for each spatial grain was deemed bet-

ter than random if the number of sites classified as “kills”

in the validation dataset exceeded 95% of the 1000 sam-

ples of random sites (95% of the random distribution).

P-values for randomization tests were calculated as the

proportion of random samples equal in value to the

observed sample (Edgington 1995), or number of sites

classified as “kills” for the validation dataset divided by

the number of total random samples (n = 1000).

Results

After excluding sites with unconfirmed or nontiger preda-

tors, we analyzed data from 138 tiger kill sites and 439

random sites (Fig. 2).

Model predictions of predation risk

Models predicted the probability of a tiger killing a live-

stock given an encounter between both species. Livestock

were most accessible to tigers close to very dense forest

(such as near the core zone of the park) and away from

roads, villages, and scrubland (Fig. 3). As predicted, the

risk to livestock increased with closer proximity to very

and moderately dense forest and the core zone boundary.

Kill probability showed a quadratic relationship to the

distance to road, village, and scrubland, with livestock

vulnerability increasing at farther distances up to a

threshold point and thereafter decreasing. Livestock were

most accessible to tigers around 1.2 km from roads,

1.1 km from villages, and 8.0 km from scrubland (Fig. 3).

The contribution of each variable to predictions of pre-

dation risk was measured by its relative importance in the

model. In the 20 m risk model, which was validated as

Figure 3. Relationship between each predictor variable and kill probability. The 95% confidence intervals are shown in gray.
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having the most accurate predictive performance (Figs. 4,

5A), distance to road2, very dense forest, core, scrub2, and

village2 all ranked ≥0.85 in relative importance and most

strongly explained the location of kills (Table 2). The rel-

ative importance of most variables remained high across

spatial grains and only two main variables decreased in

importance across spatial grains: distance to moderately

dense forest at 20 m and distance to scrubland2 at 200 m.

Model validation

Using threshold risk values from the ROC, we designated

“kills” or “no kills” if they, respectively, fell above or

below 0.26 for 20 m, 0.39 for 100 m, and 0.39 for 200 m.

Randomization tests revealed that predictions for the vali-

dation data sites exceeded the 95% limits of the random

data sites, that is, the risk models performed differently

than random (Fig. 4). However, only the model for the

finest grain (20 m) predicted kills that far exceeded the

95% distribution (Fig. 4A). Risk predictions for validation

sites from the coarser grain models (100 and 200 m) fell

on the low side of the distribution (Fig. 4B and C). The

20 m model accurately identified 65% of validation sites

(44 of 70 known kill sites) as kills, which is greater than

would be expected by random chance (P = 0.01). The

100 and 200 m models had substantially weaker predic-

tive accuracy, identifying only 11% and 4% of validation

kills as kills.

Vegetation structure

Measurements of vegetation structure revealed that

undergrowth complexity and heterogeneity differed signif-

icantly between kill sites and random sites. Shrub height,

percent shrub cover, and shrub patchiness were all higher

in the vicinity of livestock kills than random sites, gener-

ating less visibility at kills (P < 0.001; Table 3).

Spatial patterns of predation risk

Predation risk maps offered visual insight into the spatial

distribution of predicted livestock depredations. Maps

showed greater risk within forest patches and lower risk

around more open vegetation (scrublands and agricultural

fields), roads, and villages (Fig. 5). Models predicted that

8–11% (169–232 km2, depending on spatial grain) of the

Kanha Tiger Reserve fell into the highest risk category

(0.61–0.80).

Discussion

Past investigations of tiger hunting behavior and ecology

have largely focused on natural prey (e.g., Karanth and

(A)

(B)

(C)

Figure 4. Model validation results for randomization tests using an

independent dataset of known tiger kills (n = 70) for models at (A)

20-m, (B) 100-m, and (C) 200-m spatial grains. The random

distribution (black bars) was calculated by sampling 1000 batches of

70 randomly selected sites from binary predation risk maps

designated as “kill” or “no kill” (see Methods for details). Each black

bar represents the frequency of random samples (out of 1000) with

the given number of random sites designated by the model as “kills”.

Dashed red lines bound 95% of the random distribution. Solid points

represent the validation dataset and show the number of known tiger

kills that were accurately classified by the model as “kills”. Solid

points located beyond 95% of the random distribution indicate that

predictive performance is significantly better than random.
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Sunquist 2000; Karanth et al. 2004; Simcharoen et al.

2014). The few studies that have examined attacks on

livestock utilized household surveys to deduce spatial pat-

terns of conflicts at the village level (Madhusudan 2003;

Karanth et al. 2012) rather than directly examining live-

stock kill sites. Examining the biophysical attributes at

and around kill sites, as we do here, offers key comple-

mentary insight needed to directly explain the landscape

features associated with carnivore hunting that influence

livestock vulnerability to predation.

Our analyses revealed that land-use and human pres-

ence variables modeled at a fine spatial grain predicted

the spatial patterns of livestock kills by large carnivores

that ambush prey, such as tigers. Livestock were more

accessible near dense, patchy forests with tall scrub, and

poor visibility than near open vegetation. The probability

of a kill increased with greater distance from roads and

villages until animals were around 1 km from infrastruc-

ture, which may represent a threshold distance where live-

stock can conveniently access quality browse or where

tigers can access livestock uninhibited by human activity.

The kill probability response was constantly low for vil-

lages compared to other landscape attributes (Fig. 3),

demonstrating tiger aversion to human presence and the

lower likeliness of an attack on livestock within village

areas. Maps illustrated a region of high risk ringing the

inside of the park, illustrating the heightened chance of

attacks on livestock grazing within the protected core

zone.

Relevance of spatial grain for predicting
kills

All variables contributed strongly to models across all

spatial grains except distance to scrubland2 and moder-

ately dense forest, which decreased in relative importance

in the models at the coarsest and finest grains, respec-

tively. These exceptions are consistent with carnivore

behavior because the presence of forest is more likely to

impact broadscale decisions made during the search phase

of hunting, whereas the presence of scrubs more likely

plays a greater role in fine-scale decisions made at the

moment of a kill (i.e., as a determinant of prey accessibil-

ity). The shifts in variable importance suggest that tigers

alter their use of landscape features when interacting with

prey at different spatial resolutions and underscore the

(A)

(B) (C)
Figure 5. Predicted risk of tiger killing

livestock in Kanha Tiger Reserve modeled at

spatial grains of (A) 20 m, (B) 100 m, and (C)

200 m. Validation against an independent

dataset of known tiger kill sites (solid black

circles shown in [A]) indicated strong predictive

accuracy at 20 m but not 100 m or 200 m

(see Methods for details). White regions

represent areas outside the study area that

were not modeled.
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importance of modeling predation risk at a grain that

best represents the species interaction of interest for man-

agement and conservation goals.

Using past kill events to anticipate and avoid future

human–carnivore conflict is one such priority for man-

agement and conservation (Treves et al. 2011). For our

analysis, we used previous livestock kill sites to predict

future kills. External validation against an independent

dataset of kills found that the finest resolution model

(20 m) accuracy predicted the majority of kills, whereas

the coarser spatial grains (100 and 200 m) did not. Many

of the landscape variables included in models were highly

spatially heterogeneous at the fine scale. As the spatial

grain increased, this heterogeneity reduced and the coar-

ser grain models obscured the accuracy of predictions.

Representative of many large carnivores that ambush

prey, tigers tend to attack and kill prey over a small area

(Schaller 1967), necessitating fine-resolution models that

can capture the landscape features associated with species

decisions made during the attack and kill. This spatial

grain contrasts with the resolution used by other preda-

tion risk studies modeling the risk of livestock depreda-

tion, which span 1–25 km (Kaartinen et al. 2009;

Marucco and McIntire 2010; Zarco-Gonz�alez et al. 2013;

Soh et al. 2014). The coarse scales used in these studies

likely capture landscape features important in a carni-

vore’s search for prey across broad spatial grains (Gorini

et al. 2012) and thereby represent a range of general pred-

ator–prey encounters (Hebblewhite et al. 2005), which

may include kills but may not necessarily pinpoint prey

accessibility. Many free datasets of environmental satellite

data are available at different spatial grains and we

emphasize the need to carefully consider how the resolu-

tion and type of interaction data (e.g., encounters versus

kill sites) may influence outcomes prior to modeling

(Hebblewhite et al. 2005; Hilborn et al. 2012). Our results

in particular demonstrate that fine spatial grains <100 m

represent species decisions made during the attack and

kill for large carnivores that ambush prey. Coarser scales

are likely more appropriate for active carnivores that

attack and kill over larger areas (Kaartinen et al. 2009;

Davie et al. 2014).

Landscape features associated with kills

Livestock were most vulnerable to tigers within the core

zone boundary of the park, where very dense forests

located somewhat away from roads and villages provide

ideal hunting grounds for tigers. Grazing livestock within

the core of Kanha Tiger Reserve is not permitted for most

villages in an effort to preserve forest quality and prevent

attacks on livestock and people, and predation risk maps

serve as a visual reminder of the high risks of grazing

Table 3. Mann–Whitney U-test statistics showing the test coefficient

(W) and P-value (P) for vegetation structure predictor variables

between kill sites and random control sites at the three spatial grains.

All values are statistically significant (P < 0.05).

Spatial grain (m) Predictor variable W P

20 Visibility 40571.0 1.8E-09

Shrub cover 19463.5 1.9E-10

Shrub height 17430.0 1.7E-14

100 Visibility 40571.0 1.8E-09

Shrub cover 19008.0 3.9E-11

Shrub height 17008.5 6.9E-15

Shrub patchiness 18266.0 1.7E-12

200 Visibility 40571.0 1.8E-09

Shrub cover 18778.5 1.6E-11

Shrub height 16952.0 5.3E-15

Shrub patchiness 18610.5 7.8E-12

Table 2. Predation risk model output at three spatial grains showing the predictor variable relative importance, coefficient (b), and standard error

(SE) in the final averaged model. Relative importance values range from 0 to 1, with a value of 1 indicating a strong contribution to the model.

Predictor variable

Model spatial grain

20 m 100 m 200 m

Importance b SE Importance b SE Importance b SE

Intercept �2.58 0.71 �2.18 0.77 �0.73 0.60

Distance to village 0.73 8.9E-04 5.5E-04 0.69 8.3E-04 5.6E-04 0.61 6.6E-04 5.9E-04

Distance to village2 0.85 �3.4E-07 2.0E-07 0.87 �3.1E-07 2.0E-07 0.84 �2.6E-07 1.8E-07

Distance to road 1.00 3.0E-03 6.6E-04 1.00 2.8E-03 6.4E-04 1.00 2.8E-03 6.2E-04

Distance to road2 1.00 �1.2E-06 3.3E-07 1.00 �1.2E-06 3.3E-07 1.00 �1.1E-06 3.2E-07

Distance to core 0.99 �1.5E-04 5.4E-05 1.00 �1.5E-04 5.4E-05 0.96 �1.3E-04 5.0E-05

Distance to scrub 0.95 3.6E-04 1.3E-04 0.93 3.7E-04 1.3E-04 0.40 9.3E-05 1.3E-04

Distance to scrub2 0.97 �2.2E-08 8.1E-09 0.95 �2.2E-08 8.3E-09 0.47 �5.9E-09 6.2E-09

Distance to moderately dense forest 0.44 �1.5E-03 1.2E-03 0.91 �2.5E-03 1.0E-03 1.00 �2.9E-03 7.7E-04

Distance to very dense forest 1.00 �3.5E-03 8.7E-04 1.00 �3.1E-03 7.9E-04 1.00 �2.8E-03 6.3E-04
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inside the core. Our study suggests that herders aiming to

reduce livestock losses should prioritize grazing in scrub-

land and open vegetation near roads and villages but out-

side of dense forests. The risk of carnivores killing

livestock is merely one of many factors affecting decisions

about where to graze livestock; thus, our findings offer

simple and necessary guidance to assist natural resource

managers and livestock owners in this complex process.

In addition to the land-use and human presence vari-

ables featured in risk models, vegetation structure vari-

ables also differed significantly between kill and random

sites. Vegetation complexity was markedly higher and

overall visibility lower at kill sites. This is expected for

large carnivores that ambush prey, which utilize dense

vegetation to inconspicuously attack prey (Table 1). We

were unable to include vegetation structure in our spatial

models because spatially explicit data were not available

to represent the entire Kanha landscape, yet including

such information might have strengthened the predictive

accuracy of our models. We encourage future studies to

take advantage of advancing techniques for modeling the

structural complexity of vegetation based on remotely

sensed data (Estes et al. 2010).

Several modeling constraints should be noted when

considering the generalizability of our findings. First, by

basing tiger predation risk models on kill sites rather than

predator–prey encounters more inclusively, this study

offers conservative predictions about the probability of a

tiger killing a livestock given an encounter between the

two species (Hebblewhite et al. 2005; Gorini et al. 2012).

Second, as species occupancy data with a spatial resolu-

tion of less than 100 km2 are currently not available for

our study region, we limited the study to the protected

area where large populations of tigers and livestock prey

are known. The risk model would thus need to account

for predator and prey presence and resource selection if

applied to areas outside the protected area where species

presence is more uncertain. Nonetheless, our findings on

the role of spatial resolution in modeling predation risk

have applications for systems with human–carnivore con-

flict worldwide. Finally, we recognize that our dataset

may not account for unreported livestock owned by the

minority of villagers in the park not reporting losses to

the Forest Department (Karanth et al. 2012).

Broader implications for conservation

Maps generated by spatial predation risk models offer

powerful visual guides for communicating patterns of car-

nivore predation risk to stakeholders from diverse educa-

tional and cultural backgrounds (Rambaldi et al. 2006;

Brown and Raymond 2007). Spatial records of kills are

routinely collected in many regions (Woodroffe et al.

2005; Gorini et al. 2012) and can be paired with model-

ing to regularly produce up-to-date risk maps to track

conflict hotspots in near-real time. Predation risk models

and maps could be useful for numerous conservation

applications at various scales, such as policymakers

allocating financial resources for livestock insurance or

compensation schemes, managers prioritizing areas for

land-use zoning, and livestock herders selecting routes for

grazing. We emphasize the importance of collecting

geospatial data associated with predator–prey interactions

and encourage practitioners to incorporate risk modeling

into the infrastructure of conservation programs.

As human populations continue to grow and compete

with carnivores for natural resources, innovative tools

such as predation risk models are increasingly necessary

for planning compatible land use and coexistence at land-

scape scales (Walston et al. 2010; Treves et al. 2011). As

model outcomes and biological insights about predator–
prey interactions are sensitive to the spatial resolution of

analysis (Hebblewhite et al. 2005; Hilborn et al. 2012), we

recommend developing predation risk maps at the finest

spatial grain that meets specific conservation or manage-

ment objectives. When produced with the appropriate

spatial resolution, predation risk models can produce

strong quantitative predictions that facilitate science-

informed land use and management.
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Figure S1. Sampling design for measuring vegetation

structure.

Figure S2. Workflow of the model validation methods.

Table S1. Correlation matrices for spatially explicit vari-

ables at 20 m.

Table S2. Correlation matrices for spatially explicit vari-

ables at 100 m.

Table S3. Correlation matrices for spatially explicit vari-

ables at 200 m.

Table S4. Predation risk models averaged to produce the

final model.
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