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Abstract
1.	 Habitat conversion to farmland has increased human-wildlife interactions, which 

often lead to conflict, injury or death for people and animals. Understanding the 
behavioural and landscape drivers of human-wildlife conflict is critical for manag-
ing wildlife populations. Staging behaviour prior to crop incursions has been de-
scribed across multiple taxa and offers potential utility in managing conflict, but 
few quantitative assessments of staging have been undertaken. Animal move-
ment data can provide valuable, fine-scale information on such behaviour with 
opportunities for application to real-time management for conflict prediction.

2.	 We developed an approach to assess the efficacy of six widely used metrics of 
animal movement to identify staging behaviour prior to agricultural incursions. 
We applied this approach to GPS data from 55 African elephants in the Serengeti-
Mara ecosystem and found tortuosity and HMM-derived behavioural states to 
be the most effective for identifying staging events. We then assessed temporal 
patterns of defined staging at daily and seasonal scales and explored environmen-
tal and anthropogenic drivers of staging from spatial generalized logistic mixed 
models. Finally, we tested the viability of combining movement and simple spatial 
metrics to predict crop incursions based on GPS data.

3.	 Our approach identified staging behaviour that appeared to be driven largely 
by human activity and diurnal availability of protective cover from forest, riv-
erine vegetation, and topography. Staging also varied substantially by season. 
Tortuosity and behavioural state metrics identified different staging strategies 
with distinct spatial distributions and anthropogenic drivers, and appeared to be 
linked to the juxtaposition between protected and cultivated lands. Tortuosity-
based staging combined with distance-to-agriculture produced promising results 
for pre-event prediction of crop incursion.
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1  |  INTRODUC TION

Human expansion and habitat conversion in wildlife areas have 
increased the frequency of human-wildlife interactions, which 
can often lead to conflict, injury or death for people and animals 
(Woodroffe et al., 2005). Such negative interactions not only lead 
to direct losses, but can hamper wider conservation efforts and 
erode tolerance towards wildlife (Dickman,  2010; Goswami & 
Vasudev,  2017). Due to the expansion of conflict, understanding, 
predicting, and managing animal movements in human-dominated 
landscapes is a focus of conservation research (König et al., 2020). 
The spatial ecology of conflict, that is the spatial distribution of 
conflict and its behavioural and landscape drivers, can pinpoint 
risks and provide information to inform mitigation efforts (Bautista 
et al., 2021; Miller, 2015).

The spatial distribution of conflict is generally driven by the pres-
ence of humans and conflict resources, such as agriculture, water, 
or livestock (Broekhuis et al., 2017; Denninger-Snyder et al., 2019; 
Miller, 2015). However, given dynamics in resources and behaviour, 
risk of conflict is not static (Laffan et al., 2016). An animal's decision-
making during conflict can be driven by risk–reward trade-offs akin 
to anti-predation behaviour (Frid & Dill, 2002), and this may result 
in spatial and temporal heterogeneity in conflict risk patterns as an-
imals find movement strategies to adapt to a dynamic landscape and 
avoid people (Miller & Schmitz, 2019). Generally, locations of known 
conflict sites are used to assess and predict conflict risk (Bautista 
et al.,  2021; Miller,  2015), but less is understood about space use 
leading up to conflict and how the landscape may facilitate or im-
pede negative human-wildlife interactions (Blackwell et al.,  2016). 
Identifying pre-conflict behaviour and understanding how temporal 
and spatial variation in this behaviour relates to conflict risk on the 
landscape could help elucidate trade-offs that animals make during 
crop incursions and inform how to manage landscapes to reduce 
conflict. Animal GPS telemetry can provide valuable and highly spe-
cific data to inform such assessments and also has the potential to be 
applied in real-time settings as an early warning system for negative 
human-wildlife interactions.

In many migratory species, staging and stopover sites provide 
a safe area to avoid predators while resting and refuelling during 

migration (Dingle & Drake, 2007). The choice of stopover location 
and behaviour within these sites is generally the outcome of safety 
and foraging trade-offs, where animals may choose stopover sites 
with some food and little danger or seek out risky sites with access 
to food (Pomeroy et al., 2008). Characteristic pre-conflict movement 
behaviour, which we refer to as ‘staging’, that mimics this strategy 
has been described in multiple species including African and Asian 
elephants (Tiller et al.,  2021; Wilson et al.,  2015), American black 
bears (Marchinton,  1995), and monkeys (Mekonnen et al.,  2012), 
although to our knowledge it has not been quantitatively defined 
and assessed. Across these species, staging behaviour is consistently 
described as embedded movement within densely covered habitat 
during the day in advance of incursions into crops and urban areas 
at night. Similar to choice of migratory stopovers, it is theorized that 
the areas used for staging are associated with refuge habitat that 
provides safety in human-dominated areas and allows animals to re-
main closer to high-quality food sources that require minimal travel 
and search time to obtain, despite these areas being more dangerous 
(Tiller et al., 2021).

Crop raiding by elephants is one of the most prevalent types 
of human-wildlife conflict in Africa and Asia, and is increasing with 
the spread of farms into wildlife range areas (Shaffer et al., 2019). 
As a result, local communities can incur substantial costs from el-
ephants that damage crops and property, sometimes cause human 
injury or loss of life, and lead to retaliation killings of elephants 
(Denninger-Snyder et al., 2019; Shaffer et al., 2019). Elephants typ-
ically crop-raid at night when they are less likely to be detected 
(Sitati & Walpole, 2005; Tiller et al., 2021; Troup et al., 2020), and 
managers and communities employ a range of mitigations including 
flashlights, noisemakers, vehicles and firecrackers that can be dif-
ficult or dangerous to use at night (Shaffer et al., 2019). Elephants 
may also alter their normal activity budgets by reducing movement 
during the day and moving quickly through fields at night in order to 
access crops (Hahn et al., 2021). Conflict risk fluctuates annually, and 
in savannah systems, it is often linked to rainfall patterns as crops 
are primarily rain-fed and begin to mature as natural vegetation be-
gins to desiccate (Branco et al., 2019). Spatially, crop raiding tends 
to occur more frequently closer to forest edges and protected areas 
and with lower human footprint (Denninger-Snyder et al.,  2019; 

4.	 Synthesis and applications. Our study found staging by elephants prior to crop use 
could be identified from GPS tracking data, indicating that a better understanding 
of movement behaviour can inform targeted and proactive human-wildlife con-
flict management and inform spatial planning efforts. Our approach is extendable 
to other conflict-prone species to assess pre-conflict behaviours and space use 
and demonstrates some of the challenges and advantages of using animal behav-
iour to assess temporal and spatial heterogeneity in human-wildlife conflict.

K E Y W O R D S
African elephant (Loxodata africana), biologging, GPS telemetry, human-wildlife interactions, 
movement ecology, space use, spatial risk, staging
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Sitati & Walpole, 2005; Wilson et al., 2015). Elephants may also use 
these forest patches as staging areas to access crop fields (Tiller 
et al., 2021). Despite recognition of this behaviour and the poten-
tial utility of staging area identification for conflict mitigation, to our 
knowledge there have been no quantitative assessments of staging 
related to human-wildlife conflict for elephants or other species.

We analysed a long-term GPS elephant movement dataset to 
investigate the mechanisms and propensity of agricultural staging 
behaviour employed during crop raiding by elephants following four 
objectives. First, we outline and implement an approach to define 
agricultural staging (characteristic movements marked by low mobil-
ity during the day prior to night agricultural use) using six metrics de-
rived from GPS movement data. Second, we evaluate and compare 
spatial drivers of staging clusters in relation to agriculture, protective 
cover vegetation, topography, and human footprint. Third, we as-
sess how staging fluctuates temporally at daily and seasonal scales. 
Finally, we test the feasibility of using GPS-derived movement met-
rics and environmental parameters to predict night-time crop incur-
sions from day-time movement data. We discuss our findings in the 
context of possible mechanisms driving staging behaviour, the impli-
cations for proactive management of human-wildlife conflict across 
species, and directions for future research.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

The study took place in the Serengeti-Mara Ecosystem, a savannah 
ecosystem in southwestern Kenya and northwestern Tanzania that 
covers over 40,000 km2. The core area of the system is formed by 
the Serengeti National Park in Tanzania and the Masai Mara National 
Reserve in Kenya (38% of study area). It is bordered by limited use 
areas made up of community-managed conservancies with managed 
livestock grazing and no farming (14%). The remaining area is un-
protected, comprised of private and community land used for crops 
and pastoralism (48%). Agriculture is primarily maize and other grain 
crops that have two growing seasons corresponding to the system's 
biannual rainfall pattern. The agricultural-protected interface ranges 
from a hard edge (non-protected crop land adjacent to core areas) to 
soft edges (limited use areas and forest patches providing a buffer 
between crop land and core areas). Human-elephant conflict fluc-
tuates with crop cycles and is highest in the dry season, but inci-
dences have risen overall in conjunction with agricultural expansion 
(Denninger-Snyder et al., 2019; Mukeka et al., 2019).

2.2  |  Tracking data

We analysed GPS data collected from 2011 to 2021 from 59 ele-
phants (205 elephant-years, average tracking time of 880 days) that 
have been tracked as part of long-term research projects in Kenya 
and Tanzania. Collaring ethical review was approved by the Colorado 

State University IACUC committee (protocol no. 18-7744A and 19-
9431A) and followed following procedures established by the Kenya 
Wildlife Service and Tanzania Wildlife Research Institute (dataset 
details in Hahn et al.,  2021). GPS data was transmitted hourly via 
satellite. GPS data collected from females (n = 29) represent a family 
unit while males (n = 30) are dispersed and represent a single indi-
vidual. Locations were filtered to the spatial extent of the study area, 
subsampled to 1-h intervals where necessary, and individuals with 
<95% fix success rates were removed. After cleaning, the dataset 
totalled 1,128,373 locations from 55 elephants. To delineate move-
ment during agricultural use, we classified each day as agricultural 
use or non-use, based on whether an elephant was relocated in agri-
culture. Because agricultural use occurs primarily at night, a day was 
defined to start at 6 AM to avoid splitting an agricultural use event. 
There were 16,155 agricultural use days in the dataset.

2.3  |  Environmental data

Spatial covariates were compiled to analyse agricultural use and 
staging locations (Table S2). Agriculture (8% of study area) was de-
rived from a 30-m Landsat land cover classification of the Serengeti-
Mara ecosystem published in Veldhuis et al., 2019. Forest cover (1% 
of study area) was determined from the 30-m Landsat forest cover 
change product in Google Earth Engine using 30% canopy cover in 
2019 (Hansen et al., 2013). Normalized difference vegetation index 
(NDVI) was extracted from the 250 m Moderate Resolution Imaging 
Spectroradiometer (MODIS) vegetation product from 2011–2021 at 
16-day intervals and used to delineate wet, transition, and dry periods 
using Gaussian mixture clustering (Bastille-Rousseau et al.,  2020). 
To delineate areas where water was readily available we extracted 
and buffered rivers and drainages from the global HydroSHED Free 
Flowing Rivers Network (Grill et al., 2019) by 250 m corresponding 
to the mean step length for elephants. Slope was calculated based 
on the 30-m SRTM digital elevation model (Farr et al., 2007). Human 
footprint was assessed using the Google Open Buildings product for 
Africa (Sirko et al., 2021). Land use status was categorized as pro-
tected, limited use and unprotected (Figure 1).

2.4  |  Agricultural staging identification

To address our first objective to identify agricultural staging behav-
iour, defined as pre-emptive day-time movement behaviour associ-
ated with agricultural use that evening, we used an unsupervised 
ensemble modelling approach to compare the efficacy of six dif-
ferent movement metrics to detect staging movement patterns: 
hourly step length, straightness index, tortuosity, net squared dis-
placement, persistence velocity and percentage of encamped be-
haviour derived from hidden Markov models (previously derived in 
three-state HMM from Hahn et al., 2021; Table 1). We chose these 
metrics because they have either been found to capture differenti-
ated movement behaviour in elephants during crop incursions (Hahn 
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et al., 2021; Troup et al., 2020) or were expected to capture embed-
ded movement consistent with previously observed staging behav-
iour (Seidel et al., 2018). Due to the correlation between metrics, we 
evaluated each separately using the same approach to identify the 
metrics with the greatest value for capturing staging.

Based on elephant activity budgets and timing of known agricul-
tural use (Hahn et al., 2021; Tiller et al., 2021), we assumed a staging 
event could occur any time between 6 AM and 9 PM on a given day 
(stage time) and last anywhere from 2 to 15 h (stage length). To clas-
sify staging within these possible time windows, we used a thresh-
old value for each movement metric, equal or above which a staging 
event was assigned, and tested a range of possible threshold values. 
The range of threshold values was based on the 75th or 25th per-
centile of a given movement metric's mean daily values, depending 
on the expected relationship of the metric with staging (Table 1). A 
detailed description of how movement metrics and threshold values 
ranges were calculated is reported in Appendix S1.

We classified agricultural staging events for each possible com-
bination of stage time, stage length, and movement metric threshold 
value (Figure S1, example code in Appendix S3). We defined a true 

positive as a detected staging event followed by agricultural use, a 
true negative as a non-staging event not followed by agricultural 
use, a false positive as a detected staging event not followed by ag-
ricultural use, and a false negative as a non-staging event followed 
by agricultural use. The efficacy of each parameter combination was 
evaluated using the positive predictive rate and the negative pre-
dictive rate (Equation 1), where FP is the number of false positives, 
TP is the number of true positives, FN is the number of false neg-
atives, and TN is the number of true negatives for combination j. 
The positive predictive rate is the probability that a detected staging 
event does precede agricultural use. The negative predictive rate is 
the probability that agricultural use did not occur after a detected 
non-staging event,

To consolidate a staging classification based on all parameter com-
binations, we used weighted majority voting (Punera & Ghosh, 2008) 

(1)
Positive predictive valuej =1−

FPj

FPj+TPj

,

Negative predictive valuej =1−
FNj

FNj+TNj

.

F I G U R E  1  (a) The Greater Serengeti-Mara Ecosystem in Africa, showing protected and limited use areas, agriculture, forest, permanent 
and seasonal rivers, and topography. Areas not within protected and limited use boundaries are unprotected. (b) Shows the GPS relocations 
of the 55 individuals included in the study.
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to create an ensemble classification of staging for each movement 
metric. We assumed that elephants may not always stage before ag-
ricultural use, so we only used the positive predictive value (PPV) for 
weighting. For each combination j, weight w was assigned as the PPV 
to each GPS location i of a staging event (i.e. better prediction receives 
a higher weight) and as 0 for non-staging GPS locations. The weighted 
vote value v for each GPS location was calculated as the sum of weights 
across all j combinations (Equation 2; example code in Appendix S4):

The GPS location was classified as a stage if the vote value was 
greater than the mean vote value for all locations to produce the 
ensemble classification (Equation 3; Figure S1). This was performed 
separately for each movement metric,

The efficacy of the ensemble classification for each movement 
metric was evaluated using the PPV and the negative predictive 
value (NPV; Equation 1).

2.5  |  Spatial and temporal drivers of staging

To investigate our second objective, we assessed how agricultural 
staging events on the landscape were driven by natural and anthro-
pogenic factors. To assess spatial drivers of agricultural staging, we 
used true positive staging events (i.e. only staging events on agricul-
tural use days) and conducted separate analyses for each metric. The 
proportion of staging locations to total locations during agricultural 
use days were calculated on a 250 m grid corresponding to mean 
hourly step length (Figure 2c). Environmental covariates were down-
sampled and extracted for every grid cell. We used mixed-effects 
logistic regression with elephant ID as a random effect to assess the 
propensity to stage, where each cell value was weighted using the 
total count of locations for that cell. To account for spatial autocor-
relation, we included an autocovariate based on an inverse weight-
ing scheme, a symmetric neighbourhood matrix and a search radius 
that was defined dynamically for each elephant grid to select the 
lowest value at which all points had neighbours (Bardos et al., 2015). 
We developed biologically realistic candidate models and evalu-
ated all models using corrected Akaike information criterion (AICc) 
(Burnham et al., 2011). Covariates (percent forest cover, percent ag-
riculture, drainages, slope and percent permanent buildings) were 

(2)vi =
∑

wij.

(3)Ensemble stage if vi >

∑

vi

N
.

Metric Definition

Expected 
relationship to 
staging Reference

Mean step length The mean displacement 
within the time 
window

Lower Seidel et al. (2018)

Straightness index The ratio of net 
displacement R to 
path segment length 
L; log(R/L)

Lower Benhamou (2004)

Tortuosity The ratio of path 
segment length 
L to net squared 
displacement R2; 
log(L/R2)

Higher Whittington et al. (2004)

Net squared 
displacement

The straight-line 
distance between 
the start and end of 
the trajectory

Lower Seidel et al. (2018)

Persistence 
velocity

The mean of the speed 
of movement in the 
direction of heading; 
speed × cos(absolute 
turning angle)

Lower Seidel et al. (2018)

Encamped HMM 
behavioural 
state

Percentage of 
encamped GPS fixes 
from HMM model. 
HMM model used 
speed, turning angle 
and environmental 
covariates to 
estimate three 
behavioural states

Higher Hahn et al. (2021)

Abbreviation: HMM, hidden Markov model.

TA B L E  1  The movement metrics tested 
to define staging behaviour. Complete 
descriptions for the calculation and 
parameter space of each metric can be 
found in the Supporting Information.
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chosen based on expectations that staging would relate to natural 
features which provide cover, agriculture and reduced exposure to 
human settlements. Because covariate values were measured at dif-
ferent scales, continuous covariates were scaled and centred. Tests 
for multicollinearity in predictors showed that variance inflation val-
ues did not exceed 1.5.

For our third objective, we investigated the timing of staging be-
haviour at daily and seasonal scales. At the daily scale, we assessed 
staging movement patterns by calculating the mean value of each 
movement metric and mean speed at each hour of the day for (1) 
agricultural use days with a stage, (2) agricultural use days without 
a stage, and (3) non-agricultural use days. At the seasonal scale, we 
calculated the percentage of agricultural use days with a stage occur-
ring within wet, transition and dry seasons. To account for individual 
variation, we calculated staging percentages for each elephant-year.

2.6  |  Enhancing predictive performance of staging

To address our fourth objective to assess the viability of predict-
ing crop incursions, we compared our results using only stage time, 
stage length and movement (movement-only approach) to a second 

approach that also incorporated spatial information on distance to 
agricultural (movement-agriculture approach). Such spatial filters 
that can remove biologically implausible stages (i.e. false-positive lo-
cations far away from crops) may be useful for improving prediction. 
We added a spatial threshold to mask out possible staging events 
based on the distance of a GPS location to agriculture. To limit false 
negatives, this spatial threshold was defined conservatively as the 
95th percentile of Euclidean distance to agriculture during agricul-
tural use days. We used PPV and NPV (Equation 1) to compare the 
movement-only and movement-agriculture results and evaluated the 
number of event triggers that would be missed and falsely triggered 
in a conflict prediction scenario as a yearly average.

3  |  RESULTS

3.1  |  Staging classification

In our evaluation of ensemble performance for staging classification, 
results varied between all metrics but we found that tortuosity and 
HMM-derived behavioural state were the most informative in re-
lation to our objectives to predict agricultural use and investigate 

F I G U R E  2  The analysis workflow for classification and spatial modelling of staging events from GPS data for encamped HMM-derived 
staging. (a) The sequence for testing a single combination of stage time, stage length and movement metric threshold value using an 
example movement trajectory. First the focal GPS locations are identified using time of day and stage length (orange dots) and the threshold 
movement metric is set; Second, the metric value is calculated for the focal locations (66% are encamped); Third this value is compared to 
the threshold metric and classified as a stage. (b) The results of each parameter combination are combined using weighted voting to produce 
an ensemble classification of staging events. (c) The GPS locations (dots) from true positive staging events are used to create a proportional 
and weights grid to model occurrence of staging in relation to environmental variables using weighted spatial regression. HMM, hidden 
Markov model.
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spatial drivers of staging (see also all metrics, Table S1). Tortuosity 
produced the best NPV—87% with an interquartile range of 86%–
91% between individuals—but performed worse with false positive 
errors—51% PPV, with IQR of 42%–53% (Table 1). Behavioural state 
had a worse NPV (36%, IQR of 29%–39%) but was better with PPV 
(56%, IQR of 56%–58%; Table 1). Ensemble classification of staging 
using tortuosity produced 13,954 true positive staging events oc-
curring from 9 AM to 6 PM, with a mean of 83 stages per individual 
per year and 95% CI of 73–92. Classification of staging using behav-
ioural state produced 5928 staging events occurring between 8 AM 
to 5 PM, with a mean of 30 stages per individual per year and 95% CI 
of 25–35. Movement patterns for agricultural staging were clearly 
differentiated between 8 AM and 6 PM (Figures 4 and 5), indicating 
our assumption to only consider 6 AM to 9 PM for staging events 
was valid.

3.2  |  Spatial drivers of staging

For our second objective, we evaluated landscape properties of 
identified staging event locations (Figure  3a,b). For both staging 
definitions (tortuosity and behavioural state), the most parsimoni-
ous generalized logistic mixed model based on corrected Akaike in-
formation criterion (AICc) included proportion of forest cover, slope, 
drainages, proportion of agriculture and proportion of human settle-
ment (Tables S2 and S3). The effect size for the proportion of forest 
cover covariate was the greatest for both tortuosity and behavioural 
state models, indicating strong selection for forest cover when stag-
ing (Table 2). Drainages also had a positive effect in both models. 
Behavioural state-defined staging was more positively correlated 
with proportion of agriculture, proportion of human settlement, and 
slope (Table 2). Tortuosity-defined staging was more likely to occur 
in protected and limited use areas compared to unprotected areas, 
while behavioural state-defined staging was most likely to occur 
in unprotected areas. Additionally, the autocovariate estimate for 
the behavioural state model was higher, indicating that it is more 
spatially clustered on the landscape. Tortuosity-defined staging ap-
peared to occur predominantly in the Serengeti side of the system, 
while behavioural state-defined staging occurred more in the Mara 
(Figure 3c,d; Appendix S2, Interactive Map). In areas with high stag-
ing propensity (>50% of locations in a 250 m pixel related to staging 
events), tortuosity staging occurred across a greater area (1209 km2) 
relative to the area covered by behavioural state staging (307 km2; 
Figure S4).

3.3  |  Temporal drivers of staging

At the daily scale, elephant movement metrics during agricultural use 
days showed strong differentiation when staging versus not during 
the day (Figure 4a,b). However, assessment of elephant speed during 
staging revealed that tortuosity staging averaged faster movements 
during the day than behavioural state staging (Figure  5). For both 

metrics, stage length had a mean of 5 h with IQR of 3–7 h across in-
dividuals. At seasonal scales, tortuosity and behavioural state stag-
ing occurred more frequently during the transition and dry seasons, 
although staging also occurred during the wet season (Figure S2).

3.4  |  Updating staging identification with 
spatial filters

We added a spatial threshold filter of 3.5 km for distance to agri-
culture (95th percentile) to remove possible staging events far from 
farms. This threshold improved PPVs across both movement met-
rics. The effect was most pronounced for tortuosity—PPV of 70%, 
an increase of 19% compared to the movement-only results. HMM-
defined behavioural state also improved (65% PPV, increase of 9%; 
Table 3). NPVs for both metrics decreased with the spatial filter as 
it excluded true stages occurring more than 3.5 km from agriculture. 
Overall, tortuosity had the best balance between negative and PPVs 
of all 6 metrics after adding a spatial threshold for distance to agri-
culture (Table S1). In a conflict prediction scenario, using tortuosity 
and distance to agriculture would produce an average of 1741 total 
alarms per year with 522 false alarms and 250 missed alarms, while 
using encamped behavioural state and distance to agriculture would 
produce 813 total alarms per year including 284 false alarms, but 
940 missed alarms.

4  |  DISCUSSION

Crop raiding is one of the most prevalent types of human-wildlife 
conflict in Africa and Asia and has increased sharply with the spread 
of farms into wildlife range areas (Mukeka et al.,  2019; Shaffer 
et al.,  2019). Evaluation of spatial and temporal heterogeneity in 
conflict risk is critical to design conflict management plans (Laffan 
et al.,  2016), but approaches that consider animal behaviour and 
space use leading up to conflict are limited (Blackwell et al., 2016). 
Staging behaviour prior to conflict has been described across mul-
tiple taxa and offers potential utility in managing and predicting 
conflict, but few quantitative assessments of staging have been 
undertaken. We developed approaches to identify staging behav-
iour prior to agricultural use from GPS tracking data using African 
elephants and six movement metrics (tortuosity and HMM-derived 
behavioural states being the most explanatory) as a case study. 
These metrics highlighted different aspects of staging behaviour 
that, ultimately, may be useful in addressing different objectives for 
managing human-elephant interactions. Specifically, the behavioural 
states application highlighted spatially constrained embedded stag-
ing events described elsewhere (Tiller et al., 2021), while tortuosity-
based staging captured a spatially dispersed meandering staging 
behaviour that occurred more within protected areas. In contrast to 
our assumption of staging being highly embedded, tortuosity-based 
staging occurred more often and was more wide-spread in the study 
system.
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Our results highlight considerable heterogeneity in both the level 
and type of conflict risk and the ability of elephants to adapt their 
movement strategies depending on the landscape. To our knowl-
edge, this was the first attempt to systematically identify staging be-
haviour related to human-wildlife conflict. Overall, the behavioural 
state-defined encamped staging occurred on a smaller subset of 
agricultural use days, but was highly spatially clustered in the sys-
tem, which we assume would make it most useful for identifying and 
targeting specific areas on the landscape for monitoring, mitigations, 
and long-term reduction of conflict that would apply beyond collared 
elephants. Tortuosity-defined staging occurred on a vast majority of 
agricultural use days, was dispersed throughout the study area, and 
was the most reliable predictor of agricultural use based on PPV and 
NPV. We assume that these traits may be most useful for prediction 
of agricultural incursions from GPS movement data and response 
by wildlife rangers, which would be limited to collared elephants. 

Our mechanistic unsupervised approach helped test assumptions 
and identify two distinct types of staging, but this limited our abil-
ity to assess the cause of false negatives. Indeed, agricultural use 
days without staging appeared to have different movement patterns 
(Figure 4) indicating that elephants may not consistently stage prior 
to crop use, but we could not interpret agricultural staging rates. 
To refine understanding of staging behaviour, future efforts could 
employ supervised classification based on the timing and movement 
patterns identified in this study. These usually appeared distinct and 
consistent enough to identify visually in the movement track.

The distinction in both movement and environmental correlates 
for staging defined using tortuosity and behavioural state appeared 
to be linked to gradients in the juxtaposition between protected 
and cultivated land. In this system, abrupt transitions between pro-
tected areas and unprotected cultivated land were related to higher 
amounts of tortuosity-based staging events. Protected areas in 

F I G U R E  3  A comparison of the proportion of staging on the landscape produced by tortuosity and behavioural state staging definitions 
in the Serengeti-Mara System. Panels (a) and (b) show encamped behavioural state and tortuosity-defined staging propensity values, 
respectively. Darker reds indicate areas of greater staging propensity. Panels (c) and (d) show the relative difference in proportion values 
between tortuosity and behavioural state staging in the Mara (c) and Serengeti (d). Warmer colours (positive values) indicate cells with more 
behavioural state staging and cooler colours (negative values) indicate cells with more tortuosity-based staging. Areas of the map with no 
value indicate areas that elephants did not use during agricultural use days or that are in agriculture.
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the study system only allow tourism, meaning elephant behaviour 
in such areas is less inhibited by human interaction. In contrast, 
behavioural state-defined staging events occurred more often in 
limited use areas (e.g. community conservancies) and unprotected 
land, which are prone to regular livestock grazing and human ac-
tivity during the day. Overall, this embedded strategy appeared to 
put elephants in closer proximity to agriculture with the trade-off of 

Coefficient

Tortuosity Encamped Behavioural State

Log odds 95% CI Log odds 95% CI

Intercept −1.11 [−1.22, −1.01] −3.36 [−3.52, −3.20]

Percentage of forest 
(250 m)

1.56 [1.39, 1.73] 1.54 [1.37, 1.70]

Percentage of agriculture 
(1500 m)

−2.41 [−2.54, −2.28] −0.61 [−0.80, −0.41]

Proportion settlements 
(250 m)

−0.34 [−0.38, −0.30] −0.29 [−0.34, −0.24]

Slope −0.1 [−0.12, −0.08] 0.14 [0.12, 0.16]

Land use type [limited use] 0.07 [0.03, 0.10] −0.4 [−0.45, −0.34]

Land use type [protected] 0.32 [0.28, 0.36] −0.12 [−0.19, −0.05]

Drainages [within 250 m] 0.28 [0.25, 0.32] 0.09 [0.03, 0.14]

Autocovariate 0.55 [0.53, 0.57] 0.82 [0.79, 0.85]

Random effects s2
ID

 = 0.09 s2
ID

 = 0.26

TA B L E  2  Generalized logistic mixed 
models for environmental predictors 
of staging areas using the behavioural 
state and tortuosity metrics. Coefficient 
estimates and 95% confidence intervals 
are reported on the log odds scale: 95% 
confidence intervals for tortuosity and 
behavioural state that do not overlap are 
bolded. Land use type is reported with 
‘not protected’ as the reference level. 
Drainages is reported with ‘not within 
250 m’ as the reference level.

F I G U R E  4  Hourly patterns for the encamped behavioural state and tortuosity metrics are shown for agricultural (ag in legend) use 
days with staging days (squares), non-staging agricultural use days (triangles), and non-agricultural use days (circles). Activity patterns are 
calculated for each individual and bars represent 95% confidence intervals. (a) shows the mean percentage (Pct) of encamped behaviour 
fixes for each hour among all elephants. (b) shows the mean tortuosity for each hour among all elephants. Dashed lines indicate approximate 
sunrise and sunset, and the shaded box represents the time considered for staging events (6 AM–9 PM).

F I G U R E  5  Mean hourly step length for days with encamped 
behavioural state (circles) and tortuosity (triangles) defined staging 
events, highlighting that events identified using behavioural states 
show notably lower displacement relative to those identified using 
tortuosity. The mean step lengths are calculated by individual, and 
bars correspond to 95% confidence intervals. Dashed lines indicate 
approximate sunrise and sunset, and the shaded box represents the 
time considered for staging events (6 AM–9 PM).

TA B L E  3  Negative predictive value (NPV) and positive 
predictive value (PPV) results from ensemble outputs.

Metric Type
Movement 
only, %

Agricultural 
filter, %

Encamped 
Behavioural 
State

NPV 64 63

PPV 56 65

Tortuosity NPV 87 83

PPV 51 93
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reduced movement that may limit access to water and forage during 
the day (Pomeroy et al., 2008).

The definition of wildlife movement behaviours that can 
identify pre-crop raiding behaviour provides an opportu-
nity for planned management activities to mitigate conflict 
(Blackwell et al., 2016). For example, known staging hotspots 
could be regularly monitored during the crop season when the 
risk of conflict is highest to warn communities about potential 
conflict and proactively deploy deterrent mitigations. If iden-
tified hotspots are widely used, such spatiotemporal manage-
ment action can potentially impact non-collared crop-raiders. 
In addition, spatial attributes of staging could be used towards 
long-term mitigation planning, such as targeted use of unpal-
atable buffer crops, fencing, and alternative income programs 
in farms near staging hotspots (Chang'a et al.,  2016). In this 
system, areas with relatively more behavioural state-defined 
staging areas would be most suited to these approaches 
(Figure 3; Appendix S2).

Conflict prediction and proactive approaches to mitigate 
negative interactions have shown many benefits for wildlife 
and human communities (Shaffer et al., 2019). At the same time, 
approaches that produce many false positives are not useful in 
scenarios with limited management capacity to respond (Fang 
et al.,  2019). The use of tortuosity combined with information 
on distance to agriculture was able to drastically reduce false 
positives while keeping false negatives low, which suggests that 
this approach could be valuable in predicting incursions when 
paired with real-time GPS data. Our ensemble approach allows 
comparison across multiple metrics to derive the most suited for 
a specified task, in this case identifying staging behaviour from 
real-time GPS data. In future work, predictive ability could pos-
sibly be improved by combining metrics, although they would 
need to perform similarly for the embedded (behavioural state, 
net displacement) or meandering (tortuosity, persistence veloc-
ity, step length) staging types. Machine learning approaches that 
can be trained using multiple metrics and improved over time 
(Wang, 2019) may be a promising approach to pursue building off 
lessons from this analysis.

Understanding the complexity of conflict behaviours in wildlife 
is crucial to evaluate spatial and temporal heterogeneity in conflict 
risk and develop effective mitigation strategies. While our study 
used African elephants to test staging behaviour, the approach is 
translatable to other species that have been described employing 
such behaviours (Marchinton, 1995; Mekonnen et al., 2012; Wilson 
et al., 2015), and other metrics that we tested may prove better in 
different systems. Further research may be most productive for 
species in ecosystems with landscape traits that appear to drive 
staging, areas with buffer zones or corridors that may facilitate 
staging, or where climate change is expected to shift conflict risk 
(Bautista et al., 2021; Shaffer et al., 2019). Such investigations can 
play a pivotal role in motivating mitigation efforts and informing land 
use planning initiatives that incorporate behavioural complexity into 
human-wildlife conflict risk.
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Additional supporting information can be found online in the 
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negative values).
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results were combined for ensemble classification.
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