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Abstract 2 

Understanding the causal factors associated with human/livestock-large carnivore conflict and distribution of 3 

conflict risk is key to designing effective preventative and mitigation strategies. Spatial modelling of human-4 

carnivore conflict has recently gained traction, and predictive maps have become a great tool to understand the 5 

distribution of present and future conflict risk. However, very few such studies consider scale and use 6 

appropriate spatial modelling tools. We aimed to understand the ecological correlates of human-tiger (Panthera 7 

tigris) conflict, predict livestock predation risk by reintroduced tigers in Panna Tiger Reserve, Central India and 8 

understand the prey-predator dynamics behind the conflict. We modelled livestock kill as a function of various 9 

tiger relevant ecological variables at multiple scales employing spatially explicit statistical tools. As a first step, 10 

we used geostatistical modelling to create raster layers of covariates (prey, cover, human activities), following 11 

which we did univariate scaling. We then modelled livestock loss by tiger using a geoadditive model. 12 

Employing this model, we predicted and mapped conflict risk probabilities within our study site. It was found 13 

that prey and shrub cover both selected at a fine scale, were key ecological determinants of human-tiger conflict. 14 

Prey showed an inverse relationship while shrub showed non-linear relationship with livestock predation. Which 15 

lead us to conclude that in habitats where optimum ambush cover is available but prey presence is low at fine-16 

scale, carnivores are more likely to depredate domestic livestock since livestock have lost most of their anti-17 
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predator behaviours. Livestock kill by tiger is thus a culmination of predator choice and foraging tactics, and 18 

prey vulnerability and defence mechanism. The spatially explicit predation risk map produced in this study can 19 

guide adequate human-tiger conflict prevention measures. 20 

 21 

Keywords: human-carnivore conflict, ecological predictors, prey-predator dynamics, geoGAM, domestic 22 

livestock, Panna  23 
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1. Introduction  24 

Human-wildlife conflict, especially by large carnivores, is among the key drivers of local extinction of several 25 

species and is also a major cause for local communities turning hostile toward the conservation agenda (Young 26 

and Goldman 1944; Seidensticker 1987; Clark et al. 2013; Babrgir et al. 2017; Gross et al. 2021). Revealing the 27 

ecological reasoning behind large carnivore attacks on domestic livestock is key to designing effective 28 

prevention and mitigation strategies. Studies have linked several ecological factors with human-carnivore 29 

conflict (HCC) viz. tree cover, forest area and forest/vegetation types (Amirkhiz et al. 2018; Zarco-González et 30 

al. 2018), distance to forest/protected area/reserve (Treves et al. 2011; Broekhuis et al. 2017), wild prey 31 

abundance and availability (Cavalcanti et al. 2010; Davie et al. 2014), proximity to predator occupied habitat, 32 

predator and cattle density (Silveira et al. 2008; Kissling et al. 2009; Kaartinen et al. 2009), proximity to water 33 

(Behdarvand et al. 2014; Abade et al 2014), distance to settlement and road (Mbiba et al. 2018; Amirkhiz et al. 34 

2018), temperature and precipitation (Dar et al. 2009), topography/terrain, elevation and slope (Naha et al. 2018; 35 

Chetri et al. 2019), season (Mbiba et al. 2018 ), time (Yirga et al. 2012; Mazzolli et al. 2002), and, predator 36 

personality, sex, social status and pack size (Odden et al. 2002; Mattisson et al. 2011). In order to reveal these 37 

ecological predictors and understand the distribution of HCC, spatial modelling of conflict or predictive risk 38 

modelling has become one of the important tools (Treves et al. 2004; Kissling et al. 2009; Marucco and 39 

McIntire 2010; Edge et al. 2011; Zarco-González et al. 2013; Mbiba et al. 2018). Statistical modelling is used to 40 

identify the factors related to depredation events, predict its distribution by extrapolating to similar areas, and 41 

predict future conflict risk (Treves et al. 2004; Kaartinen et al. 2009; Behdarvand et al. 2014; Rostro-García et 42 

al. 2016). The predictive/risk maps assist managers in identifying vulnerable habitats, communities, and species 43 

(Treves et al. 2011; Mateo-tomas et al. 2012; Davie et al. 2014; Soh et al. 2014; Broekhuis et al. 2017; Amirkhiz 44 

et al. 2018). However, since all the factors associated with HCC are neither linearly related to kill occurrence 45 

nor come into play at the same scale, scale must be considered when modelling habitat correlates of HCC. 46 

Most ecological relationships are complex and involve several factors. And because these factors range from 47 

macro to microhabitat/environmental covariates, all of them cannot be expected to operate at and influence the 48 

relationship at the same scale. Thus, ecological relationships are scale-dependent, such that when examined at 49 

different spatio-temporal scales, the relationship and its interpretation are subject to change (Weins et al. 1989; 50 

McGarigal et al. 2016). Therefore, when identifying the factors related to a process or phenomenon, they need to 51 

be examined at multiple scales to identify the meaningful scale and make ecologically sound inferences 52 

(McGarigal et al. 2016). In the absence of such a multiscale approach, misleading conclusions may be drawn. 53 
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Even if we are able to identify the causal factors of a problem, we would not know at which level to intervene 54 

without understanding the scale at which these causal factors are influencing the problem. In which case, 55 

selection of the scale at which the variables are meaningfully correlated with the issue becomes as crucial as the 56 

selection of variables themselves (Mateo Sánchez et al. 2013). Thus, coupled with variable selection, scale 57 

optimisation should be the first step to predictive modelling. 58 

Multiscale models have been proven to perform better than single-scale models at identifying and predicting 59 

relationships between environmental variables and the phenomenon/process under study (Mateo Sánchez et al. 60 

2013; Timm et al. 2016). Thus, multiscale modelling has become an important tool for studying a myriad of 61 

ecological and biological processes/problems/groupings, including community ecology (Dray et al. 2012), 62 

ecological niche modelling/niche/resource partitioning (Hearn et al. 2018; Khosravi et al. 2019), habitat 63 

selection (Mateo Sánchez et al. 2013)/ habitat suitability modelling (Store and Jokimäki 2003; Kittle et al. 2018; 64 

Khosravi et al. 2019; Rather et al. 2020), predicting indicator species hotspots (Grand et al. 2004) and predicting 65 

carnivore dispersal (Krishnamurthy et al. 2016). Even though HCC often involves different variables and 66 

complex interactions, very few studies have tried to examine the factors determining HCC at multiple scales 67 

(Wilson et al. 2005; Soh et al. 2014; Miller et al. 2015; Rostro-García et al. 2016; Broekhuis et al. 2017). These 68 

studies have found that scale influences livestock predation risk (Davie et al. 2004), with certain habitat factors 69 

influencing livestock depredation at a broad scale and others at a fine scale (Miller et al. 2015; Rostro-García et 70 

al. 2016; Broekhuis et al. 2017). Upon comparison of multiscale model with a single-scale model, studies have 71 

concluded that scale optimisation improves modelling results of livestock predation risk by large carnivores like 72 

tiger (Panthera tigris) (Rostro-García et al. 2016). However, most studies employ aspatial models to predict 73 

predation risk using spatial correlates (Soh et al. 2013; Miller et al. 2015). Since most ecological variables 74 

exhibit a certain degree of spatial autocorrelation, it is important to account for the spatial nature of the data 75 

(Griffith 1992; Legendre 1993), when modelling predation risk by carnivores. In the absence of which, the 76 

„independence of data points‟, a common assumption across most statistical models, is violated, leading to 77 

unreliable model outcomes (Legendre 1993; Dale and Fortin 2002; Dormann et al. 2007).  78 

Moreover, most studies on HCC attempt to only map risk and discuss the causal factors. They rarely address the 79 

ecology (like prey-predator dynamics) behind how these factors interact to cause conflict (Wilkinson et al. 80 

2020). As there is a dearth of studies examining HCC at multiple scales employing appropriate spatial statistical 81 

models; our study aims to identify the ecological determinants of human-tiger conflict (HTC) at suitable scales, 82 
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predict livestock predation risk by tigers in and around Panna Tiger Reserve, Central India, and reveal the 83 

ecology behind livestock depredation by large carnivores in the light of the identified causal factors.  84 

In order to do so, our study addresses three main questions: 85 

1. What are the ecological variables that predict livestock predation by tiger and at which scale? 86 

2. How do these ecological variables explain livestock predation by tigers? 87 

3. How is the livestock predation risk probability by tiger distributed spatially within our study site?  88 

For this purpose, we modelled livestock kill as a function of various tiger relevant ecological variables, viz. 89 

prey, cover, water, and anthropogenic disturbance (Miquelle et al. 1999; Karanth and Sunquist 2000; Sunarto et 90 

al. 2012), at multiple scales employing spatially explicit Generalized Additive Model (GAM) and mapped 91 

conflict risk.  92 

Various statistical tools have been applied to model the relationship between habitat variables and livestock kill, 93 

most of the times as presence vs absence (or classification into kill or no kill) using linear parametric models for 94 

e.g. discriminant function analysis (Edge et al. 2011; Treves et al. 2004), binary logistic regression or 95 

generalized linear model (GLM) with logit link function and binomial error distribution (Broekhuis et al. 2017; 96 

Karanth et al. 2013; Kissling et al. 2009; Michalski et al. 2006; Miller et al. 2015; Thorn et al. 2012); or when 97 

modelling the frequency of occurrence of kills (count data), then negative binomial distribution (Penteriani et al. 98 

2016) or if kill events are rare, then zero-inflated negative binomial model (Soh et al. 2014) or rare event model 99 

in a binary logistic regression (Naha et al. 2018). However, classical statistical tools like parametric models have 100 

several assumptions relating to data distribution and linearity, even though most relationships are not linear in 101 

the real world and most of the data does not have a Gaussian distribution (Chambers and Dinsmore 2014; 102 

Mahmoud 2021). Thus, in recent times, machine learning algorithms are being increasingly used to generate 103 

accurate predictions without having to worry about the data distributions, a priori (Kuhn and Johnson 2013). 104 

Several studies have employed machine learning algorithms to model conflict/predation risk (Abade et al. 2014; 105 

Amirkhiz et al. 2018; Mbiba et al. 2018; Rostro-García et al., 2016). Although machine learning algorithms may 106 

perform better than classical statistical models when it comes to giving more accurate predictions, if the purpose 107 

is to draw inferences about the relationship between variables, they are not very interpretable (Stewart 2019). 108 

GAM, while retaining the interpretability of GLM has the flexibility of machine learning algorithms, because it 109 

does not assume a linear relationship between dependent and independent variables (Hastie and Tibshirani 1990; 110 

Larsen 2015). GAM is, as the name suggests, a generalisation of the linear model, in which the linear function 111 

Jo
ur

na
l P

re
-p

ro
of



6 
 

of the covariate is replaced with a smooth function (Hastie and Tibshirani 1990). Because of their 112 

semiparametric nature, GAMs are much more sensitive to unique data distribution than GLM, allowing for the 113 

modelling of nonlinear relationships by deriving predictor functions during model building (Härdle and Turlach 114 

1992; Larsen 2015). At the same time to avoid overfitting, one can control the smoothness or „wiggliness‟ of the 115 

predictor function (Larsen 2015). Despite their versatility, GAM has not been explored as much as linear or 116 

machine learning models to understand the relationship between livestock depredation by carnivores and their 117 

ecology/environmental factors (Kaartinen et al. 2009; Miller et al. 2015; Rostro-García et al. 2016; Broekhuis et 118 

al. 2017; Struebig et al. 2018). Therefore, we have carried out multivariate multiscale predictive modelling to 119 

identify the ecological factors linked to livestock depredation by tiger, employing geoGAM, and discussed how 120 

these factors might be linked to prey-predator dynamics. 121 

2. Materials and Methods 122 

2.1. Study area: Panna Tiger Reserve (24°16ʹN to 24°42ʹN and 79°29ʹE to 80°16ʹE), covering an area of 123 

1598.10 km² is situated in the state of Madhya Pradesh in central India. The Critical Tiger Habitat (CTH), or 124 

core of the reserve comprises Panna National Park and Gangau Wildlife Sanctuary, covering an area of 576.13 125 

km
2 
(Madhya Pradesh Forest Department 2007). The buffer covers an area of about 1,021.97 km

2
 (Madhya 126 

Pradesh Forest Department 2012). The reserve lies in Vindhyan hills, its altitude ranging between 330 and 540 127 

m a.s.l. (Chawdhry 1996; Rodgers et al. 2002). It has an average annual humidity of 86%, and temperature 128 

ranges from 5 to 45℃. Both monsoon (July-September) and winter (November-February) are short, thus, the 129 

climate is mostly hot and dry (Chawdhry 1996; Gopal et al. 2010). Ken a major tributary of the river Yamuna, 130 

cuts through the reserve, flowing from South to North. The major forest type is dry deciduous forest with teak 131 

(Tectona grandis) as the most dominant flora (Meher-Homji 1990). Apart from tigers, the major faunal 132 

community comprises of carnivores, viz. leopard (Panthera pardus), striped hyena (Hyaena hyaena), wild dog 133 

(Cuon alpinus), golden jackal (Canis aureus), Bengal fox (Vulpes bengalensis), jungle cat (Felis chaus), and 134 

sloth bear (Melursus ursinus); herbivores, viz. sambar (Cervus duvauceli), chital (Axis axis), nilgai (Boselaphus 135 

tragocamelus), chinkara (Gazella bennetti), chousingha or four-horned antelope (Tetraceros quadricornis) and 136 

wild pig (Sus scrofa); and primates, viz. hanuman or common langur (Semnopithecus entellus) and rhesus 137 

macaque (Macaca mullata) (Gopal et al. 2010). There are four villages within the national park area, however, 138 

there are seven villages in sanctuary area and 49 villages in the buffer of the reserve. Many of the communities 139 

living in these villages are dependent on the reserve for fuelwood, fodder and NTFPs (Malviya et al. 2022). The 140 

current study focussed on the CTH and two kilometres of natural buffer around it (Figure 1). 141 
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 142 

Fig. 1. Map depicting the study site i.e., Core area of Panna Tiger Reserve and 2 km natural buffer around it 143 

The original tiger population in Panna was lost due to poaching and as a population recovery measure, tigers 144 

were reintroduced from neighbouring reserves in 2009 (Sarkar et al. 2016). Since then, the tiger population in 145 

Panna has increased exponentially from seven founders to more than 60 individuals in 2020 (Sharma and 146 

Jarande 2020).  147 

2.2. Livestock kill quantification and kill site location: In India, forest department of the state compensates 148 

livestock depredation by wild carnivores. The owner of the livestock has to inform the local forest guard and file 149 

an application. After the site visit and getting the kill verified by a veterinarian, the forest guard then files an 150 

official report and confirms the validity of the claim, upon which the compensation is paid to the victim by the 151 

department. We collected livestock compensation records from Panna Tiger Reserve management to understand 152 

the intensity of HTC within the reserve. But the compensation data was not geotagged, hence we also obtained 153 

the livestock kill data (that has GPS locations), which is collected by tiger monitoring teams in the reserve, for 154 

the period 2009-2016. Since in case of Panna, there are several feral cattle, and no distinction is made between 155 

feral and domestic cattle in the kill records, we matched kill and compensation data to obtain reliable locations 156 
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for domestic livestock kill within the reserve. We thus matched 156 locations for the period 2011-2016. For 157 

predation risk probability modelling, we treated livestock kill data as presence and generated equal number of 158 

random pseudo-absence points using the „create random points‟ tool in ArcGIS 10.4 (ESRI 2016a) within the 159 

study site (discarding the absence points falling within a buffer of 42m around each presence point). We used 160 

livestock kill data for the period 2011-2015 for training the model and 2016 data for testing the model. 161 

2.3. Measuring ecological variables: We considered a total of 27 variables for ecological driver modelling, 162 

which can be grouped under the following heads: 163 

2.3.1. Prey: To understand the distribution of prey species, we carried out line transect surveys. We surveyed a 164 

total of 41 line transects each up to 2 km in length, during winter 2012-13 and 2013-14. All the line transects 165 

were walked in a replicate of three. We then combined the data for both years. The prey species recorded were 166 

sambar, chital, wild pig, nilgai, chinkara, chousingha, hanuman langur, hare, peacock and livestock (cattle and 167 

buffalo).  We calculated encounter rates (total no./transect length) of all prey (wild and livestock), wild prey, 168 

and livestockfor each transect.  169 

2.3.2. Vegetation cover: We quantified vegetation indices, viz. canopy cover and shrub abundance in 15m 170 

circular plots laid at every 400 m on the line transects during winter 2012-13 (Jhala et al. 2009). We laid a total 171 

of 234 circular plots. Within the plots, we made ocular estimations of canopy cover (0-100%) and scored shrub 172 

cover according to its abundance (0-4). The same team of two people carried out all the vegetation related 173 

estimations to avoid interobserver bias. 174 

For further understanding the vegetation cover of the tiger reserve, we downloaded LANDSAT 8 (OLI/TIRS) 175 

scenes for the reserve from USGS website (https://earthexplorer.usgs.gov/) for April 2013 (LANDSAT SCENE 176 

ID = LC81440432013119LGN01; Download date = 20 April 2015) and November 2013 (LANDSAT SCENE 177 

ID = LC81440432013327LGN01; Download date = 15 December 2020). We calculated Normalized Difference 178 

Vegetation Index (NDVI) (Rouse et al. 1974) using these scenes. NDVI uses the property of plants to absorb red 179 

spectral band and highly reflect near infrared, to give an index of biomass or density of vegetation for a given 180 

area. The values range from -1 to +1, near zero values indicate barren soil, 0.2 to 0.3 correspond to grasslands 181 

and values between 0.4 to 0.8 correspond to dense vegetation.  We calculated NDVI employing Raster 182 

Calculator in ArcGIS 10.1 (ESRI 2012) by the formula:  183 

NDVI = (Near Infrared - Red)/ (Near Infrared + Red). 184 
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2.3.3. Water: Using the same LANDSAT scenes as used for calculating NDVI, we calculated Normalized 185 

Difference Water Index (NDWI) (McFeeters 1996). NDWI uses green and near infrared bands to show presence 186 

of water bodies, because water absorbs light in visible to infrared electromagnetic spectrum. NDWI was 187 

calculated using Raster Calculator in ArcGIS 10.1 (ESRI 2012), by the formula:  188 

NDWI = (Green-Near Infrared)/ (Green+Near Infrared).  189 

Additionally, we obtained drainage and water source data from the forest department and created Euclidean 190 

distance raster using „Euclidean Distance‟ tool in the Spatial Analyst toolbox in ArcGIS 10.4 (ESRI 2016a). We 191 

also created Euclidean distance rasters for Ken River and its tributaries, and water sources tagged perennial.  192 

2.3.4. Topography: We downloaded ASTER Global Digital Elevation Model (DEM) data from USGS Global 193 

Visualization Viewer website. We used „Slope‟ tool in the Spatial Analyst toolbox to calculate slope from DEM 194 

layers in ArcGIS 10.1 (ESRI 2012). Additionally, we calculated topographic ruggedness index or terrain 195 

ruggedness index (TRI) that measures elevation difference between a cell and mean of its eight neighbouring 196 

cells (Riley et al. 1999) using raster calculator in ArcGIS 10.1 (ESRI 2012), by the formula (Cooley 2016):  197 

TRI = SquareRoot (Abs((Square(“3x3max”)-Square (“3x3min”)))). 198 

 2.3.5. Land Use Land Cover and forest contiguity: We procured Land Use Land Cover (LULC) prepared by 199 

Forest Survey of India (FSI) for the entire country at 98m resolution for the year 2009 (FSI 2009). We studied 200 

landscape characteristics and patterns, particularly habitat connectivity, using multiple indices in program 201 

FRAGSTATS (ver. 4.2). We ran FRAGSTAT analysis using the FSI LULC and calculated three class-level 202 

metrics: Patch Density (PD) (number of patches per hectare), Large Patch Index (LPI) (percentage of total 203 

landscape area comprised by the largest patch), and Clumpiness Index (CLUMPY) (a measure of 204 

fragmentation). LPI is a simple measure of dominance. And CLUMPY that ranges from -1 (patch type is 205 

maximally disaggregated) to 1 (patch type is maximally clumped) provides an index of fragmentation of the 206 

focal class that is not affected by changes in class area (McGarigal 2015). 207 

2.3.6. Disturbance: We also quantified anthropogenic disturbance indices in the circular plots (as discussed 208 

earlier under section 2.3.2.). In each plot, we counted all the lopped (only branches were cut) and cut (cut to 209 

stump) trees. We deployed camera traps (Cuddeback Attack pairs) in 109 locations in 2x2 km grids within the 210 

national park area, in the winter of 2013-14. Cameras were set to function 24x7 and delay between 2 211 
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consecutive captures was kept 15 seconds. We then manually counted the number of tigers, livestock, humans, 212 

and vehicles captured in each camera trap and calculated encounter rates (total no. of captures/total trap nights).  213 

We also obtained village and road location data from the forest department and calculated Euclidean distance 214 

rasters. Additionally, we downloaded human footprint data from Socio Economic Data and Application Centre 215 

(SEDAC) website for the year 2009 (Sanderson et al. 2002; Venter et al. 2018). We also downloaded population 216 

census data for the year 2011 from SEDAC (Balk et al. 2020). 217 

2.4. Geostatistical modelling to create rasters: We interpolated canopy cover, prey, human, livestock, and 218 

vehicle encounter rates, and cutting and lopping intensity rates, to create rasters using the Geostatistical wizard 219 

in ArcGIS 10.4 (Cressie 2015; ESRI 2016a). For this purpose, we considered four interpolation tools: Inverse 220 

Distance Weighing, Simple Kriging (SK), Ordinary Kriging (OK), and Empirical Bayesian Kriging (EBK). We 221 

used statistical measures of correctness (mean prediction error, root-mean-square error, standardized root-mean-222 

square error, average standard error) to compare the kriging algorithms. We selected the model that had the 223 

smallest root-mean-squared prediction error (RMSE), standardized mean nearest to zero, the average standard 224 

error nearest the root-mean-squared prediction error, and the standardized root-mean-squared prediction error 225 

nearest to 1 (ESRI 2016b) (Table A.1).  226 

2.5. Scale and variable selection: To construct a multiscale model, we resampled each of the variables (except 227 

for human footprint (which was available at ~1 km resolution)) at five scales: 30m (the highest resolution 228 

available), 50m (mean drag distance for tiger kill (Karanth and Sunquist 2000)), 100m (midpoint between fine 229 

and coarse resolution), 350m (maximum kill drag distance (Karanth and Sunquist 2000)), 1200m (coarsest 230 

resolution used by us and at which most global environmental data is available). LULC (available at 98m) could 231 

only be resampled at coarse scale (100-1200m). Thus, in total, we had 118 variables. We then extracted all the 232 

variables for each of the presence/absence points using the Spatial Analyst toolbox of ArcGIS 10.4 (ESRI 233 

2016a).   234 

For scale and feature selection, firstly, we ran univariate logistic regressions, after performing Box-Tidwell 235 

procedure to test for logistic regression‟s linearity assumption, i.e., logit transformation of the dependent 236 

variable and continuous independent variables have a linear relationship (Hosmer et al. 2013; Shin and Ying 237 

1994). Secondly, we ran univariate GAMs to understand how much r square/deviance was explained by each of 238 

the predictors at each of the scales. We selected the scales at which the variables were best explaining the 239 

response (livestock kill presence/absence). Additionally, we employed Information Value and Weight of 240 
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evidence for feature selection (Good and Osteyee 1974). We studied the results of univariate GAM and 241 

Information value to select the explanatory variables at appropriate scales. We then checked the data for 242 

multicollinearity and spatial autocorrelation. To check for multicollinearity among the selected variables, we ran 243 

appropriate tests of association (for continuous vs continuous and continuous vs ordinal variables, Kendall‟s tau 244 

b; for categorical vs continuous variables, logistic regression; and for categorical vs categorical variables, 245 

Cramer‟s V). Among the correlated variables, we included those variables in the model that better explained the 246 

response. For example, all prey (wild prey plus livestock) was highly correlated to wild prey encounter rate 247 

(r=0.812). Between the two, we selected all prey encounter rate since it was explaining higher deviance of the 248 

dependent variable in univariate GAM. Similarly, NDVI and NDWI were moderately correlated (r=0.636); we 249 

selected NDVI since it was explaining higher deviance.  250 
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 251 

Fig. 2. Interpolated layers of variables included in the global model for livestock depredation by tiger, at 252 

selected scales: a) All prey encounter rate (50m), b) shrub abundance (50m), c) canopy cover (30m), d) slope 253 

(50m), e) elevation (1200m), f) slope deviation (100m), g) NDVI (100m), h) distance to water hole (1200m), i) 254 
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distance to road (100m), j) distance to village (100m), k) human encounter rate (1200m), l) livestock encounter 255 

rate (ct) (50m) 256 

 257 

So, after variable selection, the global model consisted of the following 12 variables at these scales: All prey 258 

encounter rate (50m), slope (50m), elevation (1200m), slope deviation (100m), NDVI (100m), shrub abundance 259 

(50m), canopy cover (30m), distance to water (1200m), livestock encounter rate (camera trap) (50m), human 260 

encounter rate (1200m), distance to road (100m), distance to village (100m) (Figure 2).  261 

We checked spatial autocorrelation in these variables using Moran‟s I statistic using ArcGIS 10.4, and it was 262 

found that spatial autocorrelation was present in many variables (Getis 2007; Moran 1950).  263 

2.6. Spatial GAM: We used GAM to model livestock kill locations as a function of various tiger relevant 264 

ecological factors (Wood 2017). To account for the spatial autocorrelation in the data, we constructed spatial 265 

GAM model using geoGAM package in R ver. 3.6.3. (Nussbaum and Papritz 2017). It‟s a procedure to build a 266 

parsimonious model based on gradient boosting, smoothing splines and a smooth spatial surface to account for 267 

the spatial structure. The GAM for spatial data or geoadditive model in its full generality is represented by 268 

 ( ( ( )))        ( ( ))    

   ∑    (   ( ))   

 

∑    (   ( ))     
(   

( ))  

 

 

    269 

 ∑   ( )    (   ( ))     ( )   

 

 

Where,   ( ) is a smooth function of spatial coordinates, which accounts for residual autocorrelation (Nussbaum 270 

and Papritz 2017). 271 

Since the response variable, in this case, is binary, Bernoulli distribution is assumed, and logit link used 272 
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 276 

For building parsimonious model geoGAM automatically selects factors, covariates and spatial effects using 277 

componentwise gradient boosting, following which model is further reduced using cross validation (Nussbaum 278 

and Papritz 2017).  279 

The geoaddttive model was run on training dataset (n=144) and the final model so selected was run on test data 280 

(n=62), to get model performance measures, area under the curve (AUC) and true skill statistic. We performed 281 

all the analyses using R Statistical Software (v3.6.3; R Core Team 2020).  282 

2.7. Risk map: We created a raster with 42m cell size (average of kill drag distance for tiger as reported by 283 

literature (Karanth and Sunquist 2000; Miller et al. 2015)) and masked it to the reserve boundary using ArcGIS 284 

10.4 (ESRI 2016a). We then converted it into points and, for each of these points, extracted the values for all the 285 

explanatory variables using the Spatial Analyst toolbox of ArcGIS 10.4 (ESRI 2016a).  We then ran the final 286 

selected model on this data in R to predict predation risk probability for each point and converted the points 287 

back to raster. Finally, we assigned risk predictions as the value of the raster to create HTC risk map using 288 

ArcGIS 10.4 (ESRI 2016a). 289 

3. Results 290 

The variables selected to be included in the final geoGAM model were all prey encounter rate (50m), elevation 291 

(1200m), NDVI (100m), shrub abundance (50m), and human encounter rate (1200m). Among these smooth 292 

terms, all prey encounter rate and shrub abundance were significant at α=0.05 level (Table 1).  293 

Table 1: Approximate significance of smooth terms of final geoGAM model predicting livestock predation by 294 

tiger 295 

Smooth terms Effective degree of freedom (edf) Ref. df Chi. sq p-value 

s(prey encounter rate at 50 m) 3.17 3.85 16.65 0.002 

s(shrub abundance at 50 m) 3.23 3.97 10.95 0.025 

s(human encounter rate at 1200 m) 3.26 4.02 6.46 0.170 
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s(NDVI at 100 m) 3.18 3.95 5.72 0.190 

s(elevation at 1200m) 3.41 4.13 9.37 0.089 

 296 

 297 

Fig. 3. Partial effect plots for livestock kill by tiger in Panna Tiger Reserve: a) all prey encounter rate (50m), b) 298 

shrub abundance (50m), c) human encounter rate (1200m), d) NDVI (100m), e) elevation (1200m). The dashed 299 

line represents 95% confidence interval, and the lines on x axis represent the frequency of data. 300 

The effective degree of freedom (edf) is higher than 3 for most of the smooth terms, indicating that the 301 

wiggliness is high and relationships are nonlinear (Table 1). Even more is revealed by examining the partial 302 

effect plots of smooth terms, also called rug plots. A partial effect plot shows the effect of an explanatory 303 

variable on the response variable after accounting for the effects of all the other variables included in the model. 304 

Upon examining the partial effect plot for all prey encounter rate, we found that it has an inverse relationship 305 

with log odds of livestock kill i.e., the odds of livestock kill by tiger are higher when prey is low (Figure 3 a). In 306 

case of shrub abundance, we observed a unique trend, log odds of livestock kill increase with shrub abundance 307 

but only till it reaches a certain mark, after which increase in shrub abundance seems to reduce the odds of 308 

livestock kill (Figure 3 b). NDVI, human encounter rate and elevation, as also indicated by their chi-square p 309 

values, do not seem to have a significant relationship with the odds of livestock kill (Figure 3 c, d, e). 310 

Jo
ur

na
l P

re
-p

ro
of



16 
 

The deviance explained by the model was 44.4%, and AUC of the model was 0.91. When run on the test dataset, 311 

the model accuracy was calculated to be 0.65 (Table 2), and AUC was found to be 0.70, indicating that the 312 

model had fair amount of prediction capability. 313 

Table 2: True skill statistic of final geoGAM model predicting livestock predation by tiger (run on test dataset) 314 

Statistic Value 

Accuracy 0.65 

95% CI 0.52-0.77 

Kappa 0.30 

Sensitivity 0.61 

Specificity 0.69 

Positive Predicted Value 0.66 

Negative Predicted Value 0.65 

Prevalence 0.49 

Detection Rate 0.30 

Detection Prevalence 0.46 

Balanced Accuracy 0.65 

4. Discussion 315 

Spatial modelling of HCC has enabled conservationists to visualise where the risk of conflict is high and 316 

requires mitigation (Kaartinen et al. 2009; Treves et al. 2011; Zarco-González et al. 2013; Amirkhiz et al. 2018; 317 

Broekhuis et al. 2017). Potential habitat/environmental factors identified as drivers of conflict risk can help 318 

reduce conflict potential, and design targeted mitigation measures (Behdarvand et al. 2014). However, spatial 319 

modelling should consider scale/resolution of the data and spatial autocorrelation. In the absence of which, 320 

model results can be unreliable leading to inaccurate identification of HCC drivers and the resultant conflict 321 

risk. 322 
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Habitat factors that structure the carnivore use of an area are likely to dictate livestock kill by the carnivore and, 323 

thereby, HCC. Preferred habitat parameters for tiger have been identified mainly as high prey density, forest 324 

contiguity, thick understory, proximity to water, and low human disturbance (Miquelle et al. 1999; Karanth and 325 

Sunquist 2000; Sunarto et al. 2012). Among these, past studies have linked HTC with tree cover, 326 

elevation/altitude, slope, aspect, proximity to reserve forest, proximity to water, distance to village, distance to 327 

road, and density of livestock, settlements, and roads (Li et al. 2009; Ahmed et al. 2012; Soh et al. 2014; Miller 328 

et al. 2015; Rostro-García et al. 2016; Struebig et al. 2018; Ramesh et al. 2020). Our spatial modelling revealed 329 

that the potential ecological drivers of livestock depredation by tigers in Panna Tiger Reserve were prey, and 330 

shrub, at a fine scale, i.e., 50m which is the mean drag distance of kill by tigers in tropical landscapes (Karanth 331 

and Sunquist 2000). Miller et al. (2015), while studying livestock predation risk by tigers in India, also found 332 

that the fine-scale model (20m) performed the best (among the three spatial scales viz. 20m, 100m, and 200m at 333 

which they measured vegetation structure). They concluded that fine spatial grain risk models are more accurate 334 

in predicting human-carnivore conflict. And although Rostro-García et al. (2016) while examining livestock 335 

depredation by tiger and leopard in Bhutan tested all their variables at five scales, and found that vegetation 336 

cover was more influential at a broader scale (2000m), they concluded that scale optimization improves 337 

modelling results with multiscale model performing better than single-scale model. Albeit our modelling results 338 

also reveal that both the predictors were operating at a fine scale. It should be emphasised that since we tested 339 

each variable at multiple scales, our multiscale model is more reliable than the single scale models or models 340 

that did not consider scale, employed by past studies on HTC (Li et al. 2009; Ahmed et al. 2012; Soh et al. 341 

2014; Struebig et al. 2018; Ramesh et al. 2020).  342 

Our model suggests that when prey encounter is low at fine scale (50m), i.e., tiger encounters less prey, it is 343 

more likely to predate upon domestic livestock. Low availability of prey has been linked with livestock 344 

depredation by carnivores, including tiger (Fritts et al. 2003; Bhattarai and Fischer 2014; Burgas et al. 2014; 345 

Khorozyan et al. 2015). Moreover, vulnerability of prey influences predator choice (Greene 1986; Onkonburi, 346 

and Formanowicz' Jr 1997; Provost et al. 2006; Cresswell et al. 2010). Predators are known to select a kill that is 347 

easier to catch (Mueller 1977; Lang and Gsödl 2001; Weise et al. 2020). Livestock, having lost most of their 348 

anti-predator behaviour during the domestication process are vulnerable to becoming easy prey for predators in 349 

the absence of human herders (Linnell et al. 1999; Laporte et al. 2010; Flörcke and Grandin 2013; Weise et al. 350 

2020). Thus, in predator-occupied habitats where there is low availability of wild prey if the optimal foraging 351 
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theory (large prey, high in abundance, easy to catch) is applied (Emlen 1966; MacArthur and Pianka 1966; 352 

Werner and Hall 1974), the tiger kills what it can with least effort i.e., livestock.  353 

Shrub abundance, the second explanatory variable (also selected at 50m scale), seems to have a unique 354 

relationship with livestock kill, increase in shrub abundance increases the odds of livestock kill up to a certain 355 

point after which increase in shrub abundance decreases the odds of livestock kill. Although it is difficult to 356 

explain such a complex relationship, it can be examined in the light of predation technique of tigers. Tiger is an 357 

ambush predator therefore, in areas where there is very low cover, it might be very difficult to make a kill, but in 358 

areas where cover is high, the chances of success may improve (Greene 1986; Murray et al. 1995; Karanth and 359 

Sunquist 2000; Sunquist 2010). Studies on tiger and other carnivores have also found that livestock predation 360 

risk was higher in habitats with high shrub density because it provides cover for these predators (Davie et al. 361 

2014; Miller et al. 2015). However, if the cover is too dense, grazers like livestock are also less likely to venture 362 

into such patches because they would be devoid of grasses. Thus, making the relationship curve between 363 

livestock kill and shrub cover, bell-shaped. Livestock kill by tiger is thus a culmination of predator choice and 364 

foraging tactics, and prey vulnerability and defence mechanism. 365 

Therefore, from studying the ecological drivers of HTC in Panna Tiger Reserve, we inferred that in a predator-366 

occupied habitat if prey availability is low at fine scale, domestic livestock availability is high, and ambush 367 

cover is available, the odds of a predator depredating livestock become high.  368 
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 369 

Fig. 4. Risk map depicting probability of livestock kill by tiger in Panna Tiger Reserve predicted employing 370 

geoGAM model 371 

The risk map produced using spatial modelling shows that domestic livestock predation risk is higher in the 372 

south eastern part of the tiger reserve encompassing Panna Range and parts of Gahrighat Range (Figure 4). 373 

Preventative measures like fencing, viz. biofencing or electric/solar fencing (Distefano 2005; Sapkota et al. 374 

2014), increased protection through livestock entry point monitoring and patrolling (Pettigrew et al. 2012), 375 

change in livestock husbandry and dependence, or village resettlement (Treves and Karanth 2003), education 376 

and awareness (Consorte-McCrea et al. 2017), should be focussed on the high-risk areas and villages in the 377 

proximity of these areas.  378 

5. Conclusion 379 

Ecological drivers of HCC are complex and scale dependent. The likelihood of conflict is high in a large 380 

carnivore habitat that has low prey encounter and an influx of domestic livestock. In case of Panna, we suggest 381 

that mitigation efforts should be focussed on the administrative units flagged as high risk by our study. 382 
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Furthermore, a detailed study should be conducted to understand the lower availability of wild prey and higher 383 

availability of livestock in certain parts of the reserve, based on which prey augmentation should be considered 384 

where required and deemed feasible. 385 
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